Documento de consenso de Gesida/Plan Nacional sobre el Sida respecto al tratamiento antirretroviral en adultos infectados por el virus de la inmunodeficiencia humana (Actualización enero 2013)

Panel de expertos de Gesida y Plan Nacional sobre el Sida

Panel:

Coordinadores:

Juan Berenguer¹

Hospital Gregorio Marañón. Madrid

Pere Domingo Pedrol¹

Hospital de la Santa Creu i Sant Pau. Barcelona

Rosa Polo²

Secretaría del Plan Nacional sobre el Sida. Ministerio de Sanidad, Servicios Sociales e Igualdad. Madrid

Redactores Generales

Fernando Lozano^{1,2}

Hospital Universitario Virgen de Valme, Sevilla

José López Aldeguer¹

Hospital Universitario La Fe, Valencia

Redactores:

Koldo Aguirrebengoa¹

Hospital de Cruces. Bilbao

Vicente Estrada¹

Hospital Clínico, Madrid

Hernando Knobel²

Hospital del Mar, Barcelona

Celia Miralles²

Hospital Xeral, Vigo

Antonio Rivero¹

Hospital Reina Sofía, Córdoba

Montserrat Tuset²

Hospital Clínic, Barcelona

Juan Berenguer¹

Hospital Gregorio Marañón, Madrid

Félix Gutiérrez¹

Hospital General Universitario. Elche

Josep M. Llibre¹

Hospital Univ.t Germans Trias i Pujol. Badalona

José María Miró¹

Hospital Clínic, Barcelona

Jesús Santos²

Hospital Univ. Virgen de la Victoria. Málaga

Consultores:

Antonio Antela ¹ Hospital Clínico Universitario. Santiago	Victor Asensi¹ Hospital Universitario Central de Asturias. Oviedo
Jose R. Arribas¹	José Ramón Blanco ²
Hospital La Paz, IdiPAZ. Madrid	Hospital San Pedro. Logroño
Vicente Boix ¹ Hospital General Universitario, Alicante	Esteban Martínez ¹ Hospital Clínic, Barcelona
Federico García ¹	José M. Gatell ¹
Hospital Universitario San Cecilio, Granada	Hospital Clínic, Barcelona
Josep Mallolas ¹	Santiago Moreno ¹
Hospital Clínic, Barcelona	Hospital Ramón y Cajal, Madrid
Rosario Palacios ²	Maria Jesús Pérez-Elías¹
Hospital Univ. Virgen de la Victoria. Málaga	Hospital Ramón y Cajal, Madrid
Juan Antonio Pineda¹ Hospital Univ. Virgen de Valme, Sevilla	Francesc Vidal ¹ Hospital Universitari Joan XXIII, Tarragona

^{1.} Miembros del Panel propuestos por Gesida; 2. Ídem, propuestos por la Secretaría del Plan Nacional sobre el Sida

Agradecimiento:

La Junta Directiva de Gesida y la Secretaría del Plan Nacional sobre el Sida agradecen las aportaciones y opiniones de: Marisa Álvarez, Harkaitz Azkune, Pablo Bachiller, Manuel Cotarelo, Susana Fernández, Pedro Ferrer, Mar Franco, Henar Hevia, Eloy Gómez, Montse Jansá, Juan Emilio Losa, Jose Emilio Martín, Marta Palazuelos, Federico Pulido, Enrique Redondo, Felipe Rodríguez, Jorge del Romero y Nuria Sánchez, que han contribuido a mejorar la redacción y enriquecer el contenido del documento.

Abreviaturas usadas:

ЗТС	Lamivudina
ABC	Abacavir
APV	Amprenavir
ATV	Atazanavir
BID	Pauta de tratamiento administrada dos veces al día
COBI	Cobicistat
CVP	Carga viral plasmática
d4T	Estavudina
ddI	Didanosina
DRV	Darunavir
DTG	Dolutegravir
EFV	Efavirenz
EMA	European Medicines Agency
ENF	Enfuvirtida
ERC	Enfermedad renal crónica
ETR	Etravirina
EVG	Elvitegravir
FAR	Fármacos antirretrovirales
FPV	Fosamprenavir
FTC	Emtricitabina
IDV	Indinavir
IF	Inhibidores de la fusión
InInt	Inhibidores de la integrasa
IP	Inhibidores de la proteasa
IP/r	Inhibidor de la proteasa (IP) potenciado con ritonavir
ITIAN	Inhibidor/es transcriptasa inversa análogos nucleósido o nucleótido
ITINN	Inhibidor/es transcriptasa inversa no nucleósidos

ITS	Infecciones de transmisión sexual
ITT	Análisis por intención de tratamiento
LPV	Lopinavir
MVC	Maraviroc
NFV	Nelfinavir
NVP	Nevirapina
ОТ	Análisis "en tratamiento"
PPE	Profilaxis post-exposición
PrPE	Profilaxis pre-exposición
QD	Fármaco o pauta de tratamiento administrada una vez al día
RHS	Reacción de hipersensibilidad
RAL	Raltegravir
RPV	Rilpivirina
RTV	Ritonavir
SIRI	Síndrome inflamatorio de reconstitución inmune
SQV	Saquinavir
TAMs	Mutaciones asociadas con resistencia a los análogos de la timidina
TAR	Tratamiento antirretroviral; ídem. de alta eficacia
ТВ	Tuberculosis
TDF	Tenofovir (disoproxil fumarato)
TLOVR	Tiempo hasta la pérdida de la eficacia virológica
TPV	Tipranavir
VIH-1	Virus de la inmunodeficiencia humana tipo 1
VIH-2	Virus de la inmunodeficiencia humana tipo 2
ZDV, AZT	Zidovudina

Resumen

Objetivo: Actualizar las recomendaciones sobre el tratamiento antirretroviral (TAR) para adultos infectados por el VIH-1.

Métodos: Estas recomendaciones se han consensuado por un panel de expertos de GeSida y de la Secretaría del Plan Nacional sobre el Sida. Para ello se han revisado los resultados de eficacia y seguridad de ensayos clínicos, estudios de cohortes y de farmacocinética publicados en revistas biomédicas (PubMed y Embase) o presentados en congresos. La fuerza de cada recomendación (A, B, C) y la gradación de la evidencia que la sustentan (I, II, III) se basan en una modificación de los criterios de la *Infectious Diseases Society of America*.

Resultados: El TAR con combinaciones de tres fármacos constituye el tratamiento de inicio de elección de la infección crónica por el VIH. El TAR se recomienda siempre en los pacientes sintomáticos, en las embarazadas, en las parejas serodiscordantes con alto riesgo de transmisión, en la hepatitis B que requiera tratamiento y en la nefropatía relacionada con el VIH. Se incluyen directrices sobre el inicio del TAR en enfermos con diagnóstico simultáneo de infección por el VIH y un evento definitorio de sida. En los pacientes asintomáticos el inicio de TAR se basará en la cifra de linfocitos CD4⁺, la carga viral plasmática, la edad y las comorbilidades del paciente: 1) Si el número de linfocitos CD4⁺ es inferior a 500 células/µL se recomienda TAR; 2) Si el número de linfocitos CD4⁺ es superior a 500 células/µL se puede diferir el tratamiento, pero puede considerarse en los pacientes con cirrosis hepática, hepatitis crónica por virus C, riesgo cardiovascular elevado, CVP superior a 10⁵ copias/mL, proporción de linfocitos CD4⁺ inferior a 14%, trastornos neurocognitivos o edad superior a 55 años. El esquema terapéutico debe incluir dos inhibidores de la transcriptasa inversa análogos de nucleósido o nucleótido y un tercer fármaco (inhibidor de la transcriptasa inversa no nucleósido, inhibidor de la proteasa potenciado o inhibidor de la integrasa). Se han seleccionado por consenso combinaciones concretas de fármacos, algunas de ellas coformuladas. El objetivo del TAR es conseguir una carga viral plasmática indetectable. La adherencia al TAR juega un papel fundamental en la duración de la respuesta antiviral. Las opciones terapéuticas tras el fracaso virológico son limitadas, pero actualmente puede conseguirse el objetivo de CVP indetectable. La toxicidad es un factor cada vez menos limitante del tratamiento. Se comentan igualmente los criterios de TAR en la infección aguda, en la mujer, el embarazo y prevención de la transmisión materno-fetal, así como la profilaxis pre y postexposición (laboral o no), el manejo de la coinfección con los virus de la hepatitis B y C, la tuberculosis y otras comorbilidades. Se indican las características del TAR en la infección por el VIH-2.

Conclusiones: El TAR se recomendará siempre en los pacientes sintomáticos, en la gestante, en las parejas serodiscordantes con alto riesgo de transmisión, en la hepatitis B que requiera tratamiento y en la nefropatía asociada al VIH. En los asintomáticos la cifra de linfocitos CD4⁺, la carga viral plasmática, la edad y las comorbilidades son los factores que determinan el inicio. Las estrategias terapéuticas deben ser individualizadas para conseguir en cualquier circunstancia una carga viral plasmática indetectable, para lo cual la adherencia es fundamental.

Objective. This consensus document is an update of combined antiretroviral therapy (cARV) guidelines for adult patients with human immunodeficiency virus infection.

Methods. To formulate these recommendations a panel composed of members of the Grupo de Estudio de Sida (GESIDA) and the Secretaría del Plan Nacional sobre el Sida (SPNS) reviewed the efficacy and safety advances in clinical trials, cohort and pharmacokinetic studies published in medical journals (PubMed and Embase) or presented in medical scientific meetings. Recommendations strength (A, B, C) and the evidence in which they are supported (I, II, III) are based on a modification of the Infectious Diseases Society of America criteria.

Results. The current treatment of choice for chronic HIV infection is the combination of three drugs. cART is recommended in patients with symptomatic HIV infection, in pregnancy, in serodiscordant couples with high transmission risk, hepatitis B fulfilling treatment criteria and HIV nephropathy. Guidelines about cART treatment in patients with concurrent diagnosis of HIV infection and an opportunistic type C infection are included. In asymptomatic patients cART is recommended on the basis of CD4⁺ lymphocyte counts, plasma viral load and patient co-morbidities, as follows: 1) therapy should be started in patients with CD4 $^{+}$ counts < 500 cells/ μ L; 2) Therapy could be deferred when CD4⁺ counts are above 500 cells/μL, but should be considered in case of cirrhosis, chronic hepatitis C, high cardiovascular risk, plasma viral load >100,000 copies/mL, proportion of CD4⁺ cells <14%, cognitive impairment and in people aged >55 years. cART should include two reverse transcriptase inhibitors nucleoside analogs and a third drug (non-analogue reverse transcriptase inhibitor, ritonavir boosted protease inhibitor or integrase inhibitor). The panel has consensually selected and prioritized some drug combinations, some of them co-formulated. The objective of cART is to achieve an undetectable viral load. Adherence to therapy plays an essential role in maintaining antiviral response. Therapeutic options are limited after cART failures but undetectable viral load may be possible nowadays. Adverse events are a fading problem of cART. Guidelines in acute HIV infection, in the woman, in pregnancy, and to prevent mother-to-child transmission and pre- and post-exposition prophylaxis are commented. Management of hepatitis B or C co-infection, tuberculosis, other comorbidities, and the characteristics of cART in HIV-2 infection are included.

Conclusions. cART will be recommended in symptomatic patients, in pregnancy, in serodiscordant couples with high transmission risk, in hepatitis B requiring treatment and in HIV nephropathy. In asymptomatic patients CD4+ cells counts, viral load and patient co-morbidities are the most reference factors to consider cART. Therapy should be individualized in order to obtain undetectable viral load in any circumstance.

1. INTRODUCCION

1.1. Justificación, objetivo y alcance

El tratamiento antirretroviral (TAR) evoluciona con tal rapidez que exige una frecuente actualización de sus recomendaciones. Desde que en 1995 la Secretaría del Plan Nacional Sobre el Sida (SPNS) y su Consejo Asesor Clínico editaran las primeras "Recomendaciones de tratamiento antirretroviral en el adulto"¹, este organismo junto al Grupo de Estudio de Sida (Gesida) de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC) han actualizado estas recomendaciones con periodicidad anual, publicándolas en la revista Enfermedades Infecciosas y Microbiología Clínica o en sus respectivas páginas web². Otras instituciones y sociedades científicas elaboran y actualizan sus propias recomendaciones sobre el empleo de los fármacos antirretrovirales (FAR)^{3, 4}.

El objetivo de este documento es dar a conocer a la comunidad científica y a los profesionales que tratan a pacientes adultos infectados por el VIH el estado del arte del TAR para que puedan ajustar sus actuaciones terapéuticas. Se incluyen algunos aspectos del tratamiento y prevención que tanto Gesida como la SPNS, en colaboración con otras sociedades científicas han elaborado *in extenso*, a las que se remite al lector interesado en el tema.

1.2. Metodología

El Panel lo integran un grupo de clínicos expertos en el tratamiento de pacientes infectados por el VIH y en el uso de los FAR. Estos profesionales han sido seleccionados por la Junta Directiva de Gesida tras una convocatoria pública entre sus socios y por la SPNS y han aceptado participar voluntariamente. Cada miembro del panel ha emitido una declaración de conflicto de intereses. Los componentes del Panel se han dividido en grupos formados por un redactor y dos consultores para actualizar cada capítulo de las recomendaciones. Tres miembros del panel actúan como coordinadores y dos como redactores generales.

Para la actualización de estas guías cada redactor ha revisado los datos más relevantes de las publicaciones científicas (*PubMed* y *Embase*; idiomas: español, inglés y francés) o las comunicaciones de los congresos recientes de la materia (hasta el 30 noviembre de 2012). Con esta recopilación el redactor de cada grupo actualiza su capítulo, somete sus aportaciones a los consultores consensuando las aportaciones. Cada capítulo se remite a los coordinadores y finalmente se ensamblan en el documento en el que se resaltan en amarillo las novedades. El documento se consensúa en una reunión presencial de los coordinadores y redactores. Si con posterioridad publicara información considerada relevante se incluiría.

Tras ello, el documento se expone durante un periodo de tiempo en la web de las entidades promotoras (Gesida y SPNS) para que los profesionales, los pacientes o quien esté interesado pueda sugerir matices o cambios que el Panel puede o no aceptar *a posteriori*.

En este documento la fuerza de la recomendación y gradación de las pruebas que la sustentan se basan en una modificación de los criterios de la *Infectious Diseases Society of America* (IDSA)⁵. Según estos criterios cada recomendación debe ofrecerse siempre (A), en general (B) u opcionalmente (C) y ello basado en la calidad de los datos obtenidos a partir de uno o más ensayos clínicos aleatorizados con resultados clínicos o de laboratorio (I), de uno o más ensayos no aleatorizados o datos observacionales de cohortes (II) o de la opinión de expertos (III).

Se debe recordar que los datos sobre TAR cambian frecuentemente, por lo que los lectores deben consultar con regularidad otras fuentes de información. Gesida y la SPNS actualizarán estas recomendaciones periódicamente en función de la evolución de los conocimientos.

1.3. Principios generales

Tras más de 20 años de estudios clínicos con FAR efectuados en todos los estadios evolutivos de la infección por el VIH y utilizando los fármacos en distintas combinaciones pueden establecerse los siguientes principios:

- 1. El TAR se basa en combinaciones de al menos tres fármacos lo que retrasa la progresión clínica (morbilidad e ingresos hospitalarios), reduce los costes y aumenta la supervivencia⁶. Se han establecido pautas eficaces con menos número de fármacos en esquemas de simplificación y rescate que no están autorizadas por las autoridades sanitarias como tratamiento de inicio.
- 2. La adherencia al TAR desempeña un papel primordial en el grado y duración de la respuesta antiviral⁷. Por ello es imprescindible que cada centro hospitalario tenga una estrategia para mejorar el cumplimiento del TAR mediante una estrecha colaboración entre todos los profesionales implicados.
- 3. La situación clínica, la cifra de linfocitos CD4 y la CVP son los elementos básicos para establecer las decisiones terapéuticas y monitorizar la efectividad del TAR. Los linfocitos CD4 y la CVP son los parámetros imprescindibles para la toma de decisiones. Ambos son factores predictores independientes de la progresión de la enfermedad y de la aparición de otras entidades que en principio no se creían relacionados con el VIH. Además, el nivel de CD4 indica el riesgo de padecer eventos oportunistas y señala el momento de iniciar las profilaxis de las infecciones oportunistas. Existe una buena correlación entre las respuestas virológica, inmunológica y clínica (restauración de la inmunidad celular, retraso en la progresión y aumento de supervivencia)⁸.
- 4. El objetivo del tratamiento es reducir la CVP por debajo de los límites de detección (<50 copias/mL) y mantenerla suprimida el mayor tiempo posible.
- 5. La aparición de resistencias es un fenómeno inevitable cuando el VIH continúa replicando bajo presión selectiva de fármacos. La detección de las mutaciones de resistencias por métodos genotípicos es muy útil en el fracaso virológico.
- 6. Con las pautas actuales de TAR es posible cierta restauración cuantitativa y cualitativa del sistema inmune independientemente de la inmunodepresión de partida^{9, 10}. La recuperación es lenta y constante mientras el TAR sea efectivo y es más difícil a partir de un determinado grado de deterioro y en la edad avanzada.

- 7. En enero de 2013 disponemos de 24 FAR comercializados, pertenecientes a seis familias lo que posibilita múltiples estrategias terapéuticas individualizadas.
- 8. La toxicidad de los FAR a medio y largo plazo es un factor limitante que obliga a buscar nuevas opciones terapéuticas manteniendo la potencia antiviral¹¹.
- 9. Hay diversas pautas de TAR que son similares en cuanto a potencia antirretroviral. La elección dependerá de factores como tolerabilidad y seguridad, adherencia, tratamientos previos, resistencias cruzadas, interacciones farmacológicas, disponibilidad y coste, así como las preferencias del médico o paciente.
- 10. La recomendación de iniciar el TAR cuando la cifra de CD4 desciende por debajo de un determinado nivel se debe fundamentalmente al temor a los efectos secundarios¹¹, a las dificultades de adherencia⁷ y el riesgo de desarrollo de resistencias. También ha influido en esta actitud la imposibilidad de erradicar el VIH¹² y de restaurar la respuesta inmunoespecífica frente al mismo^{13, 14}. Sin embargo, la mejoría gradual de las pautas de inicio en cuanto a tolerabilidad y simplicidad, la evidencia de un efecto negativo directo del VIH *per se*, así como el incremento de opciones de rescate tras un fracaso virológico ha reabierto el debate sobre este tema y algunos expertos abogan por recomendaciones menos restrictivas para iniciar el tratamiento.
- 11. La complejidad creciente del TAR implica que el cuidado de los pacientes debe efectuarse por personal especializado que tenga los conocimientos y los medios adecuados¹⁵.
- 12. La prevención de la infección por el VIH es un aspecto fundamental que no debe olvidarse nunca en la práctica clínica y que debe introducirse de forma sistemática en la educación de los pacientes y las personas de su entorno¹⁶.

1.4. Evaluación del impacto de las recomendaciones

Para control del seguimiento y evaluación del impacto de estas recomendaciones en la evolución clínica y respuesta al TAR de los pacientes seguidos en cada centro o por cada profesional, se pueden utilizar algunos de los parámetros específicos incluidos en la publicación de Gesida sobre indicadores de calidad¹⁷.

2. PARAMETROS PARA GUIAR EL TRATAMIENTO ANTIRRETROVIRAL

El recuento de linfocitos CD4 y la CVP son los parámetros que se utilizan para indicar el TAR, monitorizar su eficacia y tomar decisiones respecto a cambios.

Existen otros parámetros que, aunque no intervienen directamente en el inicio del TAR, se deben tener en cuenta igualmente en la evaluación inicial o en el seguimiento ya que pueden matizar decisiones terapéuticas (Tabla 1).

2.1. Linfocitos CD4⁺

El número de linfocitos CD4⁺ es el marcador principal de riesgo de progresión clínica de la infección VIH-1 y necesidad de TAR. Un objetivo del TAR es la restauración inmunológica y la forma más práctica de valorarlo es midiendo el incremento de los linfocitos

CD4⁺, que es evidente en las primeras semanas de tratamiento¹⁸⁻²⁰. Además del número de linfocitos CD4⁺ se restaura la respuesta proliferativa frente a mitógenos y antígenos memoria pudiendo retirar las profilaxis de infecciones oportunistas¹⁹⁻²². Paralelamente al aumento de los linfocitos CD4⁺, hay una disminución de los linfocitos CD8⁺ y otros marcadores de activación del sistema inmune^{19, 21}.

El aumento de la cifra de linfocitos CD4⁺ es lento pero constante en el tiempo. No hay datos que definan cuál es la respuesta inmunológica adecuada. Se admite, según estudios de cinética celular, que durante el primer año debería existir un aumento mínimo de 50-100 linfocitos CD4⁺/μL²³. No es raro observar una discordancia entre respuesta virológica e inmunológica: pacientes que mantienen una cifra de linfocitos CD4⁺ estable o que disminuye a pesar de tener una CVP no detectable²⁴⁻²⁷. En esta situación puede existir carga viral detectable en el tejido linfático por un TAR subóptimo²⁶. Sin embargo, esta linfopenia puede deberse a otras causas como hipertensión portal o toxicidad farmacológica. En este sentido, se ha sugerido que en cirróticos se pueda usar el porcentaje de linfocitos CD4⁺ para la toma de decisiones^{28, 29}, aunque también en estos pacientes el número de linfocitos CD4⁺ ha demostrado ser el mejor predictor de riesgo³⁰. Por otra parte, se ha comunicado la posibilidad de suspender la profilaxis frente a *P. jiroveci*, en pacientes con menos de 200 linfocitos CD4⁺/μL si la CVP está indetectable, lo que orienta a que la supresión viral continuada debe ser necesaria para la reconstitución de la función inmune³¹.

En los pacientes asintomáticos deben medirse los linfocitos CD4⁺ cada 3-6 meses y ante un hallazgo que oriente a tomar una decisión terapéutica, debe repetirse en 3-4 semanas^{32, 33}.

Recomendación

- Se debe controlar el número de linfocitos CD4 ya que es el parámetro más importante para decidir el inicio del TAR (A-I)
- Se aconseja la repetición del recuento de linfocitos CD4 antes de tomar la decisión de iniciar el TAR (B-III)

2.2. Carga viral plasmática del VIH-1

El objetivo del TAR es suprimir la replicación viral de modo rápido y duradero. La CVP desciende rápidamente al inicio del TAR y el nadir, que se alcanza a las 4-8 semanas, se correlaciona con la duración de la respuesta³⁴⁻³⁷. Los pacientes con CVP muy elevadas pueden tardar hasta 24 semanas en conseguir niveles inferiores a 50 copias/mL³⁸.

El objetivo de supresión de la CVP es conseguir una cifra inferior a 50 copias/mL, cifra con la que se ha comprobado que no se seleccionan mutaciones^{39,40} y con la que la duración de la respuesta virológica es mucho mayor (frente a los mantienen CVP entre 50 y 500 copias/mL)³⁵. En los pacientes con CVP controlada se ha observado ocasionalmente brotes transitorios de viremia de bajo nivel (*blips*)⁴¹ que vuelve espontáneamente a ser indetectable sin ningún cambio en el tratamiento. La patogenia de los *blips* no está clara y se ha sugerido que la activación inmune por infecciones intercurrentes estimularía las células con infección latente (reservorios)⁴². La mayoría de es-

tudios no relacionan los *blips* con fracaso virológico⁴³⁻⁴⁶, aunque un pequeño porcentaje pueden desarrollarlo con aparición de mutaciones de resistencia^{47, 48}.

Los criterios de respuesta y fracaso virológicos son:

Respuesta virológica: Descenso de la CVP >1 log_{10} a las 4 semanas de TAR y CVP <50 copias/mL a las 16-24 semanas.

Fracaso virológico: Cualquiera de las siguientes situaciones: a) CVP detectable a las 24 semanas de TAR, o b) si tras alcanzar CVP indetectable (<50 copias/mL) vuelve a ser detectable en dos determinaciones consecutivas.

Es conveniente medir la CVP a las 4 semanas de inicio del TAR para comprobar la respuesta virológica y como medida indirecta de adherencia. Posteriormente la determinación se hará cada 3-6 meses. Si la medida de la CVP se efectúa tras un proceso viral intercurrente o vacunación puede haber brotes transitorios⁴⁹.

Recomendaciones

- Se debe conocer la CVP ya que es un criterio secundario para el inicio del TAR, complementario al número de CD4 (A-II)
- La eficacia del TAR se controla mediante la CVP que es el parámetro principal para su evaluación, definir su fracaso y tomar decisiones de cambio (B-I)
- Debe utilizarse una técnica de determinación de CVP cuyo dintel mínimo de detección sea <50 copias/mL y usar siempre la misma técnica (A-I)
- Si se van a tomar decisiones terapéuticas en función de un resultado de la CVP, se debe confirmar con una segunda determinación (A-II)

2.3. Niveles plasmáticos de fármacos

Las concentraciones plasmáticas de algunos FAR se correlacionan con su eficacia o toxicidad por lo que se ha sugerido que la determinación de los niveles plasmáticos podría ser útil para optimizar su uso⁵⁰.

Se conocen determinadas situaciones clínicas o factores que pueden inducir variaciones importantes en los niveles plasmáticos de los FAR lo que justificaría su determinación⁵¹. Entre ellos están el sexo, edad, peso y superficie corporal, los niveles de alfa1-glucoproteína y variaciones en las isoformas del citocromo P450, las interacciones medicamentosas, el embarazo, la insuficiencia hepática o renal.

La monitorización de los niveles plasmáticos se limita a ITINN e IP ya que la determinación de la forma activa de los ITIAN (intracelular) tiene una variabilidad inter e intrapaciente tan amplia que dificulta su uso clínico.

En los IP la determinación de los niveles ha perdido vigencia con respecto a su eficacia desde que se utilizan potenciados aunque ha aumentado su valor para reducir toxicidad. Los datos que relacionaban niveles plasmáticos de IP y eficacia se obtuvieron en los estudios de desarrollo donde se utilizaron en monoterapia⁵². Los estudios en regímenes de combinación han mostrado resultados dispares, variando según línea de tratamiento (sin terapia previa frente a pretratados), fármacos acompañantes (otros IP o ITINN) o potenciación con RTV⁵³⁻⁵⁹. En cuanto a toxicidad, se ha demostrado una re-

lación entre niveles plasmáticos y algunos efectos secundarios como alteraciones gastrointestinales, hipertrigliceridemia y parestesias (RTV), alteraciones renales (IDV), hepatotoxicidad (NVP), colesterol total y triglicéridos (LPV/r)⁶⁰⁻⁶⁴. Igualmente hay datos que sugieren que los pacientes que alcanzan concentraciones más elevadas de EFV tienen mayor riesgo de síntomas neuropsiquiátricos^{65, 66}.

Las limitaciones del uso rutinario de niveles plasmáticos en la clínica diaria son múltiples: no existen estudios prospectivos que demuestren su utilidad en mejorar la eficacia, ni se dispone de rangos terapéuticos asociados a respuesta o reducción de reacciones adversas, y no se dispone de la técnica en la mayoría de los laboratorios.

Recomendación

- La medición de niveles plasmáticos de los FAR no está recomendada de forma rutinaria para el manejo del paciente con infección por VIH-1 (C-III)
- La medición de niveles plasmáticos de los FAR podría ser de ayuda en el manejo de situaciones clínicas concretas (interacciones farmacológicas, TAR en trasplante de órgano, delgadez u obesidad mórbidas, embarazo, insuficiencia hepática o renal, etc.) (C-III)

2.4. Resistencia del VIH-1 a fármacos antirretrovirales

La tasa de mutación espontánea de los retrovirus se estima en un nucleótido por cada 10^4 ó 10^5 nucleótidos y copia de la cadena del ARN⁶⁷⁻⁶⁹. Por otro lado, la vida media de los linfocitos CD4 infectados que replican activamente es de un día y se estima que la vida media del virus en plasma es de 6 horas⁷⁰⁻⁷³. La conjunción de esta alta tasa de error de la transcriptasa inversa y de la rápida renovación de la población viral produce un cúmulo de gran cantidad de variantes virales, que reciben el nombre de *cuasi especies*. El número de variantes genéticas distintas presentes en un momento dado en un individuo infectado se estima entre 5×10^5 y 5×10^{10} .

Las mutaciones que confieren resistencia pueden existir en estas cuasi especies, pero representan una proporción mínima de la población viral hasta que se ve sometida a la presión selectiva del TAR⁷². Así pues, con el tratamiento las variantes resistentes se convierten en la población dominante al cabo de semanas o meses si no se suprime la replicación viral⁷⁴⁻⁷⁶.

No todas las mutaciones tienen la misma importancia. Para cada FAR existen unas llamadas "principales", cuya presencia está estrechamente ligada a la aparición de resistencia y que reducen la eficiencia biológica del virus (fitness) y otras "secundarias" que también contribuyen en menor medida a la resistencia, pero en general actúan modificando la capacidad replicativa viral.

Detección de resistencias del VIH-1 a fármacos antirretrovirales

Las variantes resistentes pueden detectarse mediante técnicas genotípicas o fenotípicas ⁷⁷. Las genotípicas detectan cambios específicos en el genoma de las enzimas diana de los fármacos (transcriptasa inversa, proteasa, integrasa, envuelta), mientras que las

técnicas fenotípicas determinan la respuesta de la población viral mayoritaria a concentraciones crecientes de los fármacos. Ambas comparten limitaciones como la dificultad de detección cuando la población mutada es <20% de la población viral o la CVP es <1.000 copias/mL⁷⁷, aunque técnicas recientes van reduciendo ambas limitaciones. En el fracaso virológico las pruebas de resistencias deben realizarse durante el TAR⁷⁸ activo ya que la población viral resistente será sustituida por otra sensible a las pocas semanas de retirar los fármacos. Los resultados de estas pruebas se deben interpretar teniendo presente los estudios previos de resistencia, la historia terapéutica y la adherencia.

Las técnicas genotípicas y fenotípicas tienen ventajas y desventajas que las hacen complementarias entre sí⁷⁷. Las técnicas genotípicas son más sencillas, rápidas y accesibles para la mayor parte de laboratorios y permiten la detección de mutaciones centinela antes de que se detecten cambios de susceptibilidad en las pruebas fenotípicas. Su mayor limitación estriba en la dificultad de establecer una correlación genotipofenotipo y, sobre todo, en las dificultades de interpretación para algunos fármacos. Además, su aplicación en la práctica diaria requiere el conocimiento previo por parte del clínico de la influencia que tiene cada mutación en la eficacia de cada fármaco. Las técnicas fenotípicas tienen la ventaja de informar del efecto neto de las distintas concentraciones sobre la sensibilidad real de la cepa predominante a los FAR, hayan sido utilizados o no. Existe una buena correlación entre las dos técnicas existentes en la actualidad, *Virologic Phenosense* y *Virco Antivirogram*⁷⁹. Sus mayores desventajas son el coste, la disponibilidad limitada y demora en la obtención de resultados. Para superar estas desventajas se ha desarrollado el fenotipo virtual⁸⁰, obtenido a partir de una base de datos que tiene miles de muestras analizadas por ambas técnicas. Ante un determinado genotipo el sistema busca todos los genotipos coincidentes en la base de datos y calcula el fenotipo medio de estos pacientes. En una modificación posterior (VircoType®) se añade información de predicción de la respuesta: proporción de pacientes con respuesta máxima o reducida y ausencia de respuesta (puntos de corte clínicos). Se ha demostrado que existe una buena correlación entre ambos métodos^{79,} 80 sobre todo con los ITINN y menos con los ITIAN. La correlación es bastante más deficiente en pacientes multitratados.

Numerosos trabajos han estudiado, en países desarrollados, la prevalencia de resistencias primarias en pacientes con infección aguda o crónica. Se sabe que la mayoría de las mutaciones puede detectarse durante años y que su prevalencia ha aumentado llegando a superar el 10% 81-83. En España en un estudio multicéntrico de pacientes con infección reciente se encontró que el 14% de las cepas tenía mutaciones primarias⁸⁴, pero datos posteriores muestran una reducción de la prevalencia en los diagnósticos nuevos a 10%85, 86. Y aún más recientemente la prevalencia de transmisión de mutaciones de resistencia en población no tratada en el periodo 2004-2008 en los nuevos diagnósticos de la cohorte prospectiva de adultos de la red de Sida (CoRIS) se ha estimado en el 8,4%⁸⁷. Actualizaciones posteriores de la cohorte han mostrado una disminución progresiva de la prevalencia global de transmisión de cepas con mutaciones de resistencia, siendo la del 2011 del 7,5% En pacientes en seguimiento durante años se debería considerar repetir el genotipado antes de iniciar el TAR ante la posibilidad de haber sufrido una reinfección con mutaciones de resistencia. . En otro orden de cosas y dado el incremento del porcentaje de pacientes con subtipos no-B que se diagnostican actualmente en España se debe de considerar la realización del subtipo viral a la vez que el estudio de resistencia⁸⁷. Con respecto a la posibilidad de transmisión de virus con mutaciones de resistencia en la integrasa viral los datos actuales muestran la ausencia de las mismas por lo que actualmente no se recomienda esta determinación en los nuevos diagnósticos⁹⁰.

En España una de las actividades de la plataforma de resistencias de la Red de SIDA ha sido el establecimiento de una base de datos de secuencias de pacientes en fracaso virológico, atendidos en numerosos centros hospitalarios españoles. Expertos de esta plataforma han elaborado un algoritmo de interpretación, que se actualiza anualmente, y que permite la predicción de la resistencia "on line". Se puede acceder a dicho algoritmo a través de la página web de la Red de Investigación en SIDA (www.reticris.net).

Una de las principales limitaciones de los estudios de resistencias consiste en que no son capaces de detectar mutaciones que no representan más del 15-20% de la población viral. Aunque se han desarrollado algunas tecnologías (PCR alelo específica, secuenciación de genomas individuales, o secuenciación masiva de genomas únicos-UDS-) que permiten detectar mutaciones de resistencia en niveles de hasta el 0,1-1%, en la actualidad no están disponibles para su uso rutinario y no se conoce con precisión la utilidad de la detección de estas poblaciones minoritarias que se escapan al estudio genotípico convencional⁹¹⁻⁹⁸. Sin embargo, las últimas Guías Europeas sobre uso de pruebas de resistencias tampoco aconsejan su uso de forma rutinaria alegando que son costosas, que no están disponibles en la mayoría de los laboratorios y que los controles de calidad no están resueltos⁹⁹. De todas formas, en un metaanálisis se ha visto que existe una relación entre el numero de variantes minoritarias detectadas, fundamentalmente mutaciones a los ITINN, y el riesgo de fracaso de tratamientos que incluyan EFV¹⁰⁰.

Significado clínico de las resistencias del VIH-1 a fármacos antirretrovirales

Con el uso de la CVP en el seguimiento de los pacientes con infección por VIH-1 se ha evidenciado la relación entre aparición de mutaciones de resistencias y fracaso virológico. Sin embargo este fenómeno no es homogéneo para todos los fármacos ya que es muy claro en los ITIAN e ITINN pero existen datos contradictorios con los IP con los que se ha constatado fracaso virológico sin evidencia de mutaciones¹⁰¹. En este sentido se ha definido el fenómeno de resistencia celular ya que se ha detectado la existencia de bombas de expulsión de los FAR en la membrana de los linfocitos y otras células. Se han descrito el MDRP-1 (glicoproteína-P) para los IP y la MDRP-4 para los ITIAN¹⁰². Se desconoce la relevancia clínica de estos hallazgos.

Los estudios prospectivos y aleatorizados que han utilizado las pruebas de resistencias para el manejo del fracaso virológico comparan la eficacia del cambio de TAR cuando se realiza según las distintas pruebas de resistencia (genotipo, fenotipo o fenotipo virtual) con o sin consejo de expertos o en función de la historia terapéutica previa y/o la experiencia clínica de los médicos¹⁰³⁻¹¹¹. Un metaanálisis de los primeros estudios comunicados puso de manifiesto que el uso del genotipo para diseñar el TAR de rescate frente al estándar (historia terapéutica y experiencia del médico) se asociaba con un control virológico significativamente mayor a los 3 y 6 meses¹¹². Estas diferencias no se observaron en los estudios que compararon los métodos fenotípicos frente al manejo

estándar¹¹². Por otro lado, no se han detectado diferencias cuando se han comparado el fenotipo virtual y el fenotipo real¹¹⁰⁻¹¹¹. Se requieren pues más datos para aclarar el papel de las pruebas fenotípicas.

Recomendaciones

- Se deben estudiar las mutaciones de resistencia ya que su conocimiento permite un mejor uso de los fármacos (A-I)
- Se considera indicada la realización estudios genotípicos de resistencias en la práctica asistencial en las situaciones expuestas en la Tabla 2 (B-II)
- No se recomienda el genotipado de la integrasa viral en pacientes naïve (C-III)
- Se debe considerar la determinación de los subtipos virales, especialmente en pacientes inmigrantes o en caso de evolución clínica rápida (nivel CIII)

2.5. Determinación del HLA B*5701

La reacción de hipersensibilidad (RHS) a ABC es un síndrome multiorgánico que se manifiesta con una combinación variable y de intensidad creciente de fiebre, mialgias, síntomas respiratorios, gastrointestinales o un exantema, pudiendo ser fatal en caso de continuar tomando el fármaco o reintroducirlo. Suele aparecer durante las primeras 6 semanas de tratamiento, se presenta en el 5-8% de los pacientes que toman ABC y es la causa más frecuente de su discontinuación¹¹³. Se sabe que la RHS es más frecuente en la población blanca y se dispone de una prueba cutánea (parche) para su confirmación.

Estudios farmacogenéticos han identificado que la RHS ocurre en las personas portadoras del alelo HLA B*5701. En un ensayo en el que los pacientes se aleatorizaron a comenzar TAR con ABC o comenzarlo sólo si el HLA*5701 era negativo, se valoró la aparición de la RHS por datos clínicos que se confirmaron con una prueba cutánea (confirmación inmunológica). La prevalencia del HLA B*5701 en esta cohorte era del 5,6%. La genotipificación del HLA B*5701 redujo la incidencia de sospecha clínica de RHS (3,4% frente 7,8%) y la inmunológica (0% frente a 2,7%) siendo el valor predictivo negativo de esta prueba del 100%¹¹⁴. Se ha validado esta prueba en población negra confirmando los resultados¹¹⁵.

El ABC no debe utilizarse en personas portadores del alelo HLA B*5701. Si es negativo no se descarta la posibilidad de RHS por lo que se debe informar y controlar los síntomas de estos pacientes respecto a la RHS cuando se inicia tratamiento con ABC.

Recomendaciones

- Se deben determinar el HLA B*5701 a todos los pacientes en el momento del diagnóstico o cuando vayan a comenzar TAR con ABC (A-I)
- Si el HLA B*5701 es positivo no se debe prescribir ABC (A-I)
- Si el HLA B*5701 es negativo no se puede descartar completamente la RHS, por lo que se debe informar al paciente y vigilar su posible aparición (A-I)

 Si se prescribe ABC sin conocer el HLA B*5701, se debe informar al paciente y estar alerta para detectar síntomas de la RHS (C-III)

2.6. Determinación del tropismo del VIH-1

El VIH-1 entra en la célula diana por un mecanismo que incluye el reconocimiento del receptor CD4⁺, seguido de la unión a uno de los correceptores CCR5 o CXCR4 y la fusión de las membranas con paso del ARN del VIH-1 a la célula invadida. Los inhibidores del CCR5 (MVC, vicriviroc) son fármacos que bloquean este receptor impidiendo la entrada del VIH-1 en la célula¹¹⁶.

Tras la infección por el VIH-1 la mayoría de los pacientes albergan virus que usan el correceptor CCR5 (R5). Si no se inicia un tratamiento el virus evoluciona a variantes que, en mayor o menor proporción, utilizan el correceptor CXCR4 (X4) o duales o mixtas (D/M) que pueden usar ambos correceptores. Este cambio se relaciona con un descenso de CD4 y aumento de la inmunodepresión ya que se consideran más virulentas 117 . En los pacientes multitratados con CVP detectable las variantes X4 o D/M son más prevalentes, pudiendo llegar a superar el 50% entre los que tienen <100 CD4/ μ 118,119

Actualmente existe una técnica fenotípica para la detección del tropismo ($Trofile^{TM}$, Monogram Biosciences, USA) que se realiza en un solo centro (California, USA) y que llega a detectar la población X4 o D/M cuya proporción supere el 0.3% si la CVP es ≥1000 copias/mL (prueba ultrasensible)¹²⁰. Este ensayo presenta limitaciones técnicas y logísticas que dificultan su utilización en la práctica clínica. Los ensayos genotípicos (secuenciación de la región V3) se presentan como una alternativa más económica, rápida y factible de desarrollar en cualquier laboratorio especializado de VIH-1 que cuente con tecnología para realizar estudios genotípicos. Los primeros estudios de correlación entre métodos genotípicos y *Trofile*TM mostraron, en general, una baja sensibilidad de los primeros para la detección de variantes X4-trópicas¹²¹. Posteriormente, la introducción de mejoras en la interpretación de algunos algoritmos genotípicos y de estrategias de combinación de los mismos 121-124, ha conseguido mejorar notablemente la sensibilidad de estos para detectar variantes X4-trópicas en comparación con el ensayo de TrofileTM. En un análisis retrospectivo de los ensayos clínicos con MVC MOTI-VATE y MERIT en pacientes pretratados y sin tratamiento previo respectivamente, se ha demostrado que las herramientas genotípicas y el ensayo de *Trofile*TM son comparables en la predicción de respuesta virológica a MVC^{125,126}. Estos datos ponen de manifiesto la viabilidad de la utilización de métodos genotípicos para la determinación del tropismo viral en la práctica clínica, aunque el método genotípico no está homologado. En Marzo 2010 un grupo de investigadores nacionales, con experiencia en la determinación de tropismo viral, iniciaron una serie de reuniones que han culminado en la publicación de una revisión, en la que se detallan las recomendaciones que este grupo estima adecuadas para la determinación genotípica del tropismo en la práctica clínica¹²⁷ y también recientemente se han publicado las guías europeas para la realización del tropismo¹²⁸. Las recomendaciones actuales respecto a la determinación del tropismo serían efectuarlo en todos los pacientes que hayan fracasado a cualquier línea de tratamiento y vayan a iniciar un tratamiento de rescate. En pacientes sin tratamiento previo se recomienda realizar la determinación del tropismo cuando se va a iniciar el TAR en determinadas situaciones clínicas (resistencias primarias, toxicidad a fármacos

Recomendaciones

- El tropismo viral se debe conocer antes de iniciar el tratamiento con un fármaco inhibidor del receptor CCR5 (A-I)
- Se recomienda la determinación del tropismo del VIH-1 en todos los pacientes que hayan fracasado a cualquier línea de tratamiento y vayan a iniciar un tratamiento de rescate (A-III)
- La información del tropismo (R5 / X4) debe de estar disponible rutinariamente junto con el estudio de resistencias a todos los antiretrovirales con el fin de facilitar la selección del tratamiento de rescate más óptimo (A-III)
- En pacientes que vayan a iniciar el TAR se debe determinar el tropismo si se considera el MVC como una opción terapéutica (B-III)

3. INFECCIÓN AGUDA POR VIH-1

La primoinfección por el VIH-1 es sintomática en más de la mitad de los casos, pero puede pasar desapercibida ya que sus síntomas son los de una virosis común¹³¹⁻¹³⁷. El cuadro clínico es similar a la mononucleosis infecciosa o a una meningoencefalitis viral¹³⁵⁻¹³⁷. Los síntomas y signos más comunes son fiebre, odinofagia, adenopatías de predominio laterocervical, mialgias, exantema, sudoración nocturna y artralgias¹³⁸. Debe sospecharse en toda persona con síntomas compatibles, con o sin conducta de riesgo. Las determinaciones necesarias para el diagnóstico difieren de la infección crónica. Como en esta fase todavía no hay anticuerpos (período ventana) debe determinarse la CVP¹³⁹, que se detecta a partir de la primera semana, precede a los síntomas y tiene una sensibilidad y especificidad del 100% y 97%, respectivamente (debe ser una CVP alta ya que si es inferior a 10.000 copias/mL puede ser un falso positivo). Las pruebas de ELISA de cuarta generación tienen la capacidad adicional de detectar el antígeno p24 del VIH-1 en la misma reacción, acortando el período ventana en una semana.La CVP en la infección aguda suele estar muy elevada (más de 6 log₁₀) y se relaciona con la intensidad de las manifestaciones clínicas. La seroconversión se detecta 1-2 semanas más tarde¹³⁸. La técnica de Western blot, con la que se confirma el diagnóstico, puede ser negativa o indeterminada y deberá repetirse unas semanas después del comienzo de los síntomas para confirmar su positivización. La presencia o ausencia de la banda p31 indica que la infección lleva más o menos 90 días de evolución¹³⁶. El término infección aguda (diagnóstico antes de la seroconversión, menos de 30 días) no debe confundirse con infección reciente, que es la que tiene menos de seis meses de evolución (menos de 180 días)¹³⁵⁻¹³⁷.

Desde la descripción de los primeros casos de infección aguda se sabe que la progresión a sida es más rápida en los pacientes sintomáticos. En estudios de cohortes que han analizado la historia natural de la infección VIH-1 se ha evidenciado que la progresión a sida o muerte se asocia a factores iniciales de la infección, como la gravedad de la sintomatología en la infección aguda¹⁴⁰ (mayor riesgo a mayor número de síntomas), cuantía del descenso inicial del número de linfocitos CD4⁺ (mayor riesgo si es inferior a 500 células/μL)¹⁴¹, nivel de la CVP basal¹⁴² o a partir del cuarto mes (mayor progresión si el *setpoint* es mayor de 100.000 copias/mL)¹⁴⁰, a la cuantía de ADN proviral inicial (mayor progresión si es mayor de 3,4 log₁₀ copias/millón de células mononucleares en sangre periférica)¹⁴¹, a la infección por virus X4 o con tropismo D/M¹⁴³⁻¹⁴⁶, a las infecciones por más de un virus VIH-1¹⁴⁷ y al perfil genético de los individuos infectados¹⁴⁸⁻¹⁴⁹. De todos estos factores, las características de la infección sintomática, la CVP, la cifra de linfocitos CD4⁺ y el tropismo viral son los parámetros que nos pueden ayudar a decidir el inicio de TAR en la práctica clínica.

El TAR en la infección aguda puede tener ventajas e inconvenientes^{135,150}. Las ventajas teóricas serían acortar la duración y gravedad de los síntomas, suprimir la replicación viral, reducir el riesgo de transmisión del VIH-1 (muy elevado en particular en varones homosexuales)^{132,151-153}, reducir la diversidad viral y el número de células infectadas (reservorio) y preservar o restaurar el sistema inmunitario y la inmunidad específica frente al VIH-1, tanto proliferativa (mediada por los linfocitos CD4⁺) como citotóxica (mediada por los linfocitos CD8⁺)^{131,154-158}, lo que podría permitir el control inmunológico de la replicación viral, modificar la historia natural, disminuir el riesgo de progresión y mejorar el pronóstico. Para ello el TAR debería iniciarse en los primeros 30 días de la infección, ya que a partir de entonces se produce el escape virológico a la respuesta VIH-específica celular y humoral¹⁵⁹. Por el contrario, las principales desventajas del TAR en esta fase son la exposición a los FAR sin un beneficio clínico demostrado, su duración indefinida (ya que con las pautas de TAR que hasta ahora se han utilizado no se erradica la infección¹³¹, ni se restaura el tejido linfático asociado a mucosas¹⁶⁰), el riesgo de efectos secundarios, de desarrollo de resistencias si el cumplimiento no es <mark>adecuado</mark>, la posible reducción de la calidad de vida y el tratamiento innecesario de los individuos no progresores.

En la actualidad el inicio del TAR durante la infección aguda o reciente aún es controvertido 135,150,161-163 ya que su potencial beneficio a largo plazo es desconocido. La información disponible se ha obtenido de series pequeñas, generalmente sin grupo control, en países desarrollados, con pacientes infectados por el subtipo B del VIH-1 y con pautas de TAR similares a las utilizadas en la infección crónica. No se ha demostrado un beneficio clínico en términos de reducir la progresión a sida o muerte 161, aunque en algún estudio se ha visto una mejor evolución inmunológica y virológica en pacientes tratados 164-167 si se inicia el TAR durante la infección aguda por el VIH-1. Recientemente se ha publicado un estudio americano de cohortes que demuestra que durante

los primeros cuatro meses que siguen a la infección por el VIH existe un aumento transitorio de la cifra de linfocitos CD4 y que tras alcanzar la cifra máxima posteriormente disminuye de forma progresiva, siendo la cifra de CD4 menor que la basal a partir de los 12 meses de la infección. Este estudio demuestra que el máximo beneficio inmunológico del TAR se consigue cuando este se inicia en los primeros 4 meses de la infección por el VIH (la proporción de pacientes que posteriormente alcanza una cifra de CD4 >900 células/μL fue del 64% vs. solo un 34% cuando el TAR se inició a partir de los 4 meses de la infección; *P*<0.001) ¹⁶⁸.

En cualquier caso, si se decide iniciar TAR las pautas recomendadas son las mismas que en la infección crónica y la respuesta virológica a IP o NN similar 165,168-170. Sin embargo, en este escenario se podría considerar una pauta con dos ITIAN (preferentemente TDF/FTC) y un inhibidor de la integrasa (RAL y en un futuro con EVG/COBI o con DTG) por su mayor concentración en las secreciones genitales¹⁵⁹ y la reducción más rápida de la CVP durante las primeras 4-8 semanas de TAR en comparación con los IP o ITINN¹⁷¹⁻¹⁷², lo que podría facilitar la reducción de la transmisión del VIH¹⁷¹. Estudios preliminares con cuatro o cinco FAR, incluyendo inhibidores de la entrada y/o de la integrasa, no parecen ser más efectivas a las 48 semanas en este escenario 172,173. Como en la infección crónica, siempre debe efectuarse una prueba de resistencia, se vaya a iniciar TAR o no, por la posibilidad de transmisión de cepas resistentes. En pacientes con multirresistencia se debe realizar un tropismo viral porque se han descrito cepas con fenotipo dual R5/X4 con una rápida progresión a sida¹³⁸⁻¹⁴¹. Dado que la prevalencia de cepas con resistencia a ITINN es mayor que a IP o inhibidores de la integrasa en pacientes con infección aguda o reciente^{84, 174,175}, si se decide iniciar el TAR y todavía no está disponible el resultado del estudio de resistencias es preferible comenzar con una pauta basada en IP. Por otra parte, se recomienda realizar un tropismo viral ya que los pacientes con fenotipo viral no-R5 tienen una progresión a sida más rápida 143-¹⁴⁶.Con las pautas de TAR clásicas se ha observado que la prevalencia de lipodistrofia, dislipemia y otros efectos adversos asociados al TAR es similar a la de los pacientes con infección crónica 170,176-178

Para evitar el TAR indefinido en este escenario y conseguir los objetivos mencionados previamente se han planteado diversas estrategias 135,150,161-163: 1) Administrar el TAR durante un periodo limitado de tiempo; 2) Administrarlo de forma intermitente, a fin de potenciar la respuesta VIH-específica y controlar la replicación viral sin FAR; 3) Combinar el TAR con inmunosupresores (hidroxiurea, ciclosporina A, ácido micofenólico) o citoquinas (IL-2, interferón); y, 4) Asociar TAR y vacunas terapéuticas. Sin embargo, ninguna de estas estrategias ha conseguido que el sistema inmune controle la replicación viral de forma sostenida en ausencia de TAR como en los controladores de élite, por lo que en la actualidad si se inicia el TAR durante la infección aguda probablemente se deba mantener de forma indefinida.

La eficacia del TAR durante un periodo variable se ha evaluado principalmente en estudios de cohortes en los que se han comparado pacientes con infección aguda o reciente tratados frente a no tratados. Los resultados de la mayoría de estos estudios no han conseguido demostrar un beneficio clínico, virológico ni inmunológico a las 48-144 semanas de interrumpir el TAR, mientras que en otros, sólo una pequeña proporción de los pacientes tratados mostraban un *setpoint* de CVP más bajo, mayores cifras de linfocitos CD4⁺ o mantenían la respuesta inmunoespecífica frente al VIH-1^{168,179-190}. La

proporción de controladores de elite (CVP inferior a 50 copias/mL) después de haber parado el TAR iniciado durante la infección aguda/reciente se ha estudiado en dos cohortes. En la cohorte CASCADE¹⁹¹, solo 11 (4%) de 259 pacientes seroconvertores no tuvieron un rebrote virológico a los 24 meses de parar el TAR. La mediana de tiempo hasta el rebrote de la CVP (dos determinaciones consecutivas de CVP superior a 50 copias/mL) en los 248 pacientes restantes fue de 1,7 meses. En la cohorte francesa PRIMO¹⁹², solo 14 (9%) de los 164 pacientes que pararon el TAR después de haberlo iniciado durante la infección aguda por el VIH lo mantuvieron indetectable durante una mediana de 4,5 años.

En el último año se han publicado tres ensayos clínicos 193-195 que estudiaban el beneficio clínico, inmunológico o virológico de distintas estrategias de administración del TAR en la infección aguda por el VIH. El primero es el ensayo clínico SPARTAC 193, un estudio multicéntrico y multinacional que aleatorizó 367 pacientes con infección aguda o reciente a no recibir TAR (N=124), a recibirlo durante 12 semanas (N=120) o durante 48 semanas (N=123). La variable de análisis principal era inmunológica (tiempo hasta tener una cifra de linfocitos CD4 inferior a 350 células/µL) o necesidad de iniciar TAR indefinido. La mediana de seguimiento de los pacientes fue de unos 3 años. El estudio concluyó que el TAR de duración limitada no fue beneficioso. En comparación con la rama control sin TAR, el de 12 semanas no se asoció a ningún beneficio y el TAR de 48 semanas retrasó en algo más de un año el deterioro inmunológico o el reinicio de TAR, beneficiándose más aquellos pacientes que lo iniciaron en los primeros 90 días de la infección por el VIH-1. Por otra parte la interrupción del TAR no se acompañó de efectos secundarios, desarrollo de resistencias ni comprometió la restauración inmunológica cuando los pacientes reiniciaron el TAR indefinido.

El segundo es el ensayo clínico PRIMO-SHM¹⁹⁴, un ensayo multicéntrico realizado en los Países Bajos con un diseño similar al del SPARTAC, en el que 168 pacientes con infección aguda o reciente por el VIH se aleatorizaron a recibir TAR durante 24 o 60 semanas o a no recibir TAR. Los pacientes con una primoinfección grave (p.ej. meningitis) o que solo querían ser tratados se aleatorizaron a TAR durante 24 o 60 semanas. Las variables de análisis principal eran virológica (CVP a las 36 semanas de finalizar el TAR o de la infección en el grupo control) o el tiempo sin TAR en el grupo control o tras pararlo en las dos ramas de TAR. Los criterios de inicio de TAR fueron inmunológicos (recuento de linfocitos CD4⁺ inferior a 350 células/μL) o clínicos (sida). El número de pacientes aleatorizados a no recibir TAR, 24 o 60 semanas de TAR fueron: 36, 62 y 66 pacientes, respectivamente. Cuatro pacientes se perdieron durante el seguimiento. Las media (DE) de CVP a las 36 semanas sin TAR en las tres ramas del estudio fue de 4,8 (0,6), 4,0 (1,0) y 4,3 (0,9) log₁₀/mL (*P*<0,001), aunque esta diferencia se perdió con el tiempo, siendo la CVP a las 144 semanas similar en las tres ramas. La recuperación inmunológica fue mayor en los pacientes con TAR pero la pendiente de caída del número de linfocitos CD4⁺ al parar el TAR fue similar a la de los pacientes que no recibieron TAR. La mediana (IC 95%) de tiempo sin TAR en la rama control (no TAR) fue de 0,7 (0,0-1,8) años y en las ramas de 24 y 60 semanas fue de 3,0 (1,9-4,2) y 1,8 (0,5-3,0) años, respectivamente (prueba de log-rank, P<0.001). Las conclusiones de este ensayo clínico fueron que el TAR durante la infección aguda/reciente por el VIH redujo transitoriamente el setpoint de CVP y difirió el reinicio del TAR indefinido durante la infección crónica por el VIH.

El tercero es el estudio Setpoint (ACTG A5217)¹⁹⁵, un ensayo clínico aleatorizado en el que pacientes con infección reciente (<180 días) fueron asignados a recibir TAR de forma inmediata durante 36 semanas con TDF/FTC y LPV/r (rama inmediata) o a no recibir TAR (rama diferida). La variable de análisis principal fue la disminución del nivel de viremia en la semana 72 sin TAR (por lo tanto se compararon 36 semanas de TAR seguidas de 36 semanas sin TAR frente a 72 semanas sin TAR). La variable secundaria fue la necesidad de iniciar TAR indefinido. El estudio fue interrumpido por el equipo de control de seguridad debido a que muchos de los pacientes de la rama de TAR diferido debieron iniciar TAR por criterios clínicos, inmunológicos (recuento de linfocitos $\mathsf{CD4}^+$ inferior a 350 células/μL) o virológicos (CVP mayor de 200.000 copias/mL) y aunque se pudieran incluir los pacientes planeados no se podría comprobar si habría diferencias en el nivel de viremia a las 72 semanas entre ambas ramas del estudio. Se incluyeron 130 de los 150 participantes previstos. El equipo de control de seguridad del estudio basó la decisión de parar el estudio en que requirieron TAR indefinido 23 de los 64 (36%) pacientes asignados a la rama diferida frente a 7 de los 66 (11%) pacientes asignados a la rama inmediata, la mayoría por criterios inmunológicos. Los niveles de viremia (media [DE]) en la semana 72 en pacientes sin TAR en las ramas de TAR inmediato y diferido fueron de 3,99 (0,13) y 4,15 (0,13) log₁₀/mL, respectivamente. Al comparar el ritmo de inicio de TAR indefinido en ambas ramas, marcando como tiempo 0 en la rama de TAR inmediato la semana 36, se observó que el TAR inmediato solo retrasó ligeramente el inicio de TAR indefinido (p=0,035). Por tanto, las conclusiones de estos tres ensayos clínicos son que en la práctica clínica, si se inicia TAR en la fase aguda o reciente de la infección por el VIH-1, este debe ser indefinido.

La administración de TAR intermitente con el fin de potenciar la respuesta VIH-1 inmunoespecífica para controlar la replicación viral no ha conseguido buenos resultados, siendo testimonial la proporción de pacientes que mantenía la respuesta inmune y el control de la replicación viral sin TAR a las 96 semanas^{158,196}. Además esta estrategia de interrupción estructurada no está exenta de la aparición de resistencias^{197,198}.

La estrategia de asociar al TAR citoquinas como interferón-pegilado o IL-2, a fin de disminuir el reservorio viral y mejorar la respuesta inmunitaria 199,200,201 tampoco ha conseguido sus objetivos. Se han efectuado estudios con interferón pegilado o inmunosupresores (hidroxiurea, ciclosporina, ácido micofenólico) para reducir la activación del sistema inmune y controlar la replicación viral 198,203-206. Algunos de estos estudios solamente han podido demostrar mayor toxicidad sin aumentar la eficacia.

Finalmente, las vacunas terapéuticas, asociadas o no a TAR, con el fin de restaurar o potenciar la respuesta inmunoespecífica frente al VIH-1 tampoco han mostrado mejores resultados. Se sabía que en modelos animales algunas vacunas habían sido satisfactorias^{207,208}, pero los resultados de ensayos clínicos doble ciego en humanos han sido desalentadores²⁰⁹⁻²¹¹. Tanto el estudio QUEST²⁰⁹ (TAR frente a TAR más la vacuna ALVAC-HIV, y frente a TAR más la vacuna ALVAC-HIV más Remune[©]), como en el ensayo clínico que comparó diferentes dosis de una vacuna que usaba el virus de la viruela aviar con los genes *gag/pol* del VIH-1 insertados²¹⁰, como en el estudio ACTG A5187 (TAR frente a TAR más vacuna HIV DNA)²¹¹, las respuestas virológica e inmunoespecífica fueron similares al grupo placebo.

Las vacunas preventivas tampoco parecen modificar la historia natural de la infección por el VIH en los pacientes que se infectan. En el ensayo clínico tailandés de ALVAC-VIH y AIDSVAX B/ $\rm E^{212}$, que redujo la infección por el VIH en un 31%, la vacunación no alteró el curso clínico de la infección por el VIH después de la infección, al ser el tiempo hasta tener una cifra de CD4 inferior a 350 células/ $\rm \mu L$ o la necesidad de iniciar TAR similar en los grupos vacunado y placebo.

Por otra parte, también debería recomendarse el inicio del TAR en todas aquellas indicaciones de inicio de TAR que sean independientes de la cifra de linfocitos CD4⁺ y que se describen en el apartado de la infección crónica por el VIH y en las mujeres embarazadas que se infectan por el VIH durante el embarazo (aplicar el mismo nivel y fuerza de la recomendación).

Finalmente, debido a lo anteriormente explicado, debe valorarse siempre el incluir a estos pacientes en protocolos de investigación o en ensayos clínicos que busquen la erradicación o la cura funcional del VIH²¹³.

Recomendaciones

- Se recomienda iniciar TAR de forma inmediata en los pacientes con infección aguda sintomática cuando: a) Exista afectación neurológica (meningoencefalitis, síndrome de Guillain-Barré, etc) o de cualquier otro órgano o sistema (hepatitis, miopericarditis, trombocitopenia, etc); b) sea prolongada (>7 días de duración); c) se acompañe de eventos clínicos B o C relacionados con la inmunodepresión; o d) se acompañe de una inmunodepresión celular avanzada (recuento de linfocitos CD4⁺ inferior a 350/μL (B-II); o e) el paciente tenga un tropismo viral no-R5 o una CVP a los tres meses de la infección superior a 100.000 copias/mL (B-II). En los pacientes con una infección aguda asintomática o una con infección reciente por el VIH se recomienda iniciar TAR si cumplen los criterios d o e (B-II).
- Se debe considerar iniciar el tratamiento en los casos en los que exista un alto riesgo de transmisión del VIH-1 (A-II)
- También debe recomendarse el inicio del TAR en aquellas indicaciones de inicio de TAR que sean independientes de la cifra de linfocitos CD4+ y que se describen en el apartado de la infección crónica por el VIH y en las mujeres embarazadas que se infectan por el VIH durante el embarazo (aplicar el mismo nivel y fuerza de la recomendación).
- Si se decide iniciar TAR se recomienda hacerlo con las mismas pautas preferentes para tratar la infección crónica por el VIH. Una pauta con dos ITIAN (preferentemente TDF/FTC) y un inhibidor de la integrasa (RAL) tendría la ventaja de una mayor concentración en las secreciones genitales y podría reducir más rápidamente la CVP durante las primeras 4-8 semanas en comparación con los IP o ITINN, lo que podría facilitar la reducción de la transmisión del VIH (B-III)
- Se debe efectuar siempre una prueba de resistencias y un tropismo viral al diagnóstico de la infección aguda o reciente, se vaya a iniciar TAR o no (B-II)
- Si no se dispone del resultado del estudio de resistencias es preferible comenzar con una pauta basada en un IP/r hasta tener los resultados (A-II)
- Si se inicia el TAR, éste debe administrarse por tiempo indefinido (A-I)

En los pacientes sin criterios de TAR se recomienda reevaluar éstos a partir de los 6 meses, cuando la infección pasa a ser crónica (A-I)

4. TRATAMIENTO ANTIRRETROVIRAL INICIAL

Los principales motivos para iniciar el tratamiento son la reducción de la morbilidad y mortalidad asociada a la infección por VIH-1, la mejoría de la calidad de vida, la restauración y preservación de la función del sistema inmunológico, la supresión completa y duradera de la replicación del VIH-1 y la prevención de la transmisión del virus. Es importante hacer una valoración individualizada del momento de inicio del TAR y de los fármacos que deben formar parte del régimen inicial, sopesando las ventajas e inconvenientes de cada una de las opciones.

La disposición y la motivación del paciente es un factor crítico a la hora de tomar la decisión de cuándo empezarlo.

4.1. Cuándo iniciar el TAR

Se dispone de combinaciones de FAR que bloquean de forma duradera la replicación viral en plasma y tejido linfático permitiendo la restauración, al menos parcial, del sistema inmunológico²¹⁴⁻²¹⁶. En ediciones previas de estas guías se hacía énfasis en la influencia en el balance riesgo/beneficio del TAR de la toxicidad a medio-largo plazo de los FAR, los problemas de adherencia, la aparición de resistencias, las interacciones medicamentosas y el impacto en la calidad de vida⁷. Aunque todos estos factores siguen siendo muy importantes, es justo reconocer que el número de opciones terapéuticas, la eficacia, la seguridad y la simplicidad de las combinaciones de antirretrovirales han aumentado marcadamente durante los últimos seis años²¹⁷. Además, debido fundamentalmente al uso de IP/r, el problema de la resistencia a múltiples clases de FAR ha disminuido considerablemente.

Gracias al TAR se ha reducido drásticamente el riesgo de progresión y muerte de los pacientes con infección por el VIH-1. A pesar de todos estos avances, la esperanza de vida del paciente infectado por el VIH-1 en tratamiento está acortada con respecto a la de la población general^{8, 218}. Sin embargo, en aquellos pacientes que han recibido TAR durante al menos 6 años y han alcanzado una cifra de CD4 >500 células/ μ L, la supervivencia podría ser similar a la población general²¹⁹.

El aumento de la eficacia, seguridad y simplicidad del TAR junto con el reconocimiento de que aún existe margen de mejora en el aumento de la esperanza de vida del paciente infectado por el VIH-1 ha vuelto a plantear el debate sobre un inicio más temprano del TAR.

Riesgo de progresión

La CVP y la cifra de linfocitos CD4⁺ son marcadores independientes de progresión de la infección por el VIH-1^{220,221}.

Los resultados de diferentes ensayos clínicos demuestran claramente el beneficio del inicio del TAR en pacientes cuya cifra de linfocitos $CD4^+$ es inferior a 350 células/ $\mu L^{222,223}$.

El debate actual se centra en torno a si es necesario iniciar TAR con cifras de linfocitos $CD4^{+}$ superiores a $\frac{500}{0}$ células/ μ L. Los datos que sustentan este debate provienen de cohortes de pacientes en las que se ha evaluado la mortalidad, la progresión a sida, la incidencia de enfermedades no definitorias de sida, la recuperación inmunológica y la toxicidad del tratamiento en función de la cifra de linfocitos $CD4^{+}$ al inicio del TAR. Los estudios de cohortes tienen importantes problemas metodológicos como el sesgo de prescripción que hacen que la calidad de la evidencia sea menor que la proveniente de ensayos clínicos aleatorizados.

Respuesta clínica (progresión a sida o muerte)

Hay datos muy limitados sobre la comparación de la mortalidad y/o progresión a sida en pacientes que empiezan TAR por encima o por debajo de 350 CD4/μL.

En un análisis conjunto de varias cohortes que incluyó más de 21.000 pacientes, la progresión a sida o muerte fue significativamente mayor en los que iniciaban el TAR entre 251-350 CD4/ μ L (HR: 1,28, IC 95%: 1,04-1,57) que en los que lo empezaron entre 351-450. Igualmente en el primer grupo se observó una mayor mortalidad y aún mayor diferencia cuando se analizaba conjuntamente sida o muerte (HR 1,13; IC 95% entre 0,80 y 1,60) 9 . Sin embargo no hubo diferencias significativas cuando se compararon los estratos 351-450 y 451-550

En la cohorte PISCIS el riesgo de progresión a sida tras inicio de TAR fue significativamente menor en los pacientes que lo iniciaron con cifras de CD4 \geq 350 células/ μ L que en los que empezaron entre 200-350 CD4/ μ L (HR: 1,85; IC 95%: 1,03 a 3,33), o <200 CD4/ μ L (HR: 2,97; IC 95%: 1,91 a 4,63)¹⁰.

En un subanálisis de los pacientes con más de 350 linfocitos $CD4^+/\mu L$ del ensayo SMART que no estaban recibiendo TAR al inicio del estudio, los aleatorizados a demorar el TAR hasta alcanzar la cifra de 250 linfocitos $CD4^+/\mu L$ tuvieron mayor riesgo de enfermedades oportunistas y/o muerte por causas no directamente relacionadas con sida que quienes iniciaron TAR inmediatamente con cifras de $CD4 \ge 350$ células/ μL^{222} .

Por último, en un análisis paralelo de 17.517 pacientes con infección por VIH-1 asintomática en EE.UU y Canadá (estudio NA-ACCORD), se estratificaron los pacientes en función de la cifra de linfocitos CD4⁺ (de 351 a 500 células/μL o más de 500 células/μL) en el momento de iniciar el TAR. En cada grupo se comparó el riesgo relativo de muerte de los pacientes que iniciaron tratamiento cuando la cifra de linfocitos CD4⁺ era superior a cualquiera de los dos puntos de corte (tratamiento precoz) con el de los pacientes que difirieron el tratamiento hasta que la cifra de linfocitos CD4⁺ cayó por debajo de dichos puntos de corte (tratamiento diferido). El primer análisis incluyó 8.362 pacientes, 2.084 (25%) que iniciaron tratamiento entre 351 y 500 células/μL y 6.278 (75%) que difirieron el tratamiento. Tras ajuste por año de tratamiento, cohorte, y características clínicas y demográficas se halló un incremento del riesgo de muerte del 69% comparando el grupo de tratamiento precoz con el de tratamiento diferido (RR en el grupo de TAR diferido: 1,69; IC 95%: 1,26 a 2,26; p <0,001). En un segundo análisis con 9.155 pacientes, 2.220 (24%) iniciaron TAR precozmente (más de 500 células/μL) y

6.935 (76%) difirieron el TAR. Se halló un incremento del riesgo relativo de muerte en el grupo de TAR diferido del 94% (RR. 1,94; IC 95%: 1,37 a 2,79; p <0,001)²²⁴.

Por último, en un ensayo clínico, controlado, aleatorizado, abierto, llevado a cabo en Haití, se incluyeron 816 pacientes mayores de 18 años a iniciar TAR (AZT+3TC+EFV) entre 200 y 350 células CD4⁺/μL o diferirlo hasta 2 semanas después del diagnóstico clínico de sida o que su cifra de linfocitos CD4⁺ descendiera por debajo de 200 células/μL. El estudio fue interrumpido prematuramente tras un análisis interino planeado que mostró 6 muertes en el grupo de 200 a 350 células/μL frente a 23 en los pacientes que difirieron el TAR. Además, en el grupo de TAR diferido se diagnosticaron el doble de casos de tuberculosis que en el grupo de inicio inmediato²²³.

En el ensayo clínico multinacional *HIV Prevention Trials Network* (HPTN) 052 se incluyeron 1.763 parejas serodiscordantes en las que el miembro infectado por VIH-1 tenía una cifra de linfocitos CD4⁺ entre 350 y 550 células/μL. Los miembros infectados fueron aleatorizados a recibir TAR de forma inmediata o a diferirlo hasta que la cifra de CD4⁺ descendiera por debajo de 250 células/μL o apareciera un evento relacionado con el VIH-1. Este ensayo clínico no sólo pretendía investigar si el tratamiento del miembro infectado reducía la transmisión del VIH-1 al no infectado sino también si el TAR precoz reducía el desarrollo de eventos clínicos en el infectado (tuberculosis pulmonar, infecciones bacterianas graves o evento definitorio de estadio 4 de la OMS). Durante el estudio, desarrollaron un evento clínico 105 pacientes; 40 en el brazo de TAR precoz y 65 en el brazo de TAR diferido con una reducción de eventos clínicos cerca del 40% en el grupo de TAR precoz (HR 0,40: IC 95%, 0,40 a 0,88; p=0,01)¹⁵².

En resumen, existen pruebas consistentes que indican que el riesgo de progresión y/o muerte es mayor cuando se inicia el TAR con cifras de CD4 inferiores a 350 células/ μ L que cuando se inicia con cifras superiores.

Incidencia de enfermedades no relacionadas con el VIH-1

Recientemente los estudios de cohortes han puesto énfasis en el riesgo de aparición de enfermedades que hasta el momento no se habían considerado relacionadas con la inmunosupresión. Estas enfermedades son de tipo cardiovascular (infarto de miocardio, ictus), afectación de órganos (insuficiencia renal, hepatopatía descompensada) y aparición de cánceres no definitorios de sida.

Hay que resaltar que los pacientes que empiezan TAR con más de 200 linfocitos $CD4^+/\mu L$ tienen la misma probabilidad de tener una enfermedad no relacionada con el VIH-1 que una entidad definitoria de sida²²⁵. Por lo tanto, es muy relevante investigar estrategias encaminadas a disminuir la incidencia de los dos tipos de complicaciones y no sólo de las relacionadas clásicamente con la inmunosupresión. El TAR podría ejercer un efecto beneficioso sobre las complicaciones no relacionadas con sida mediante el control del estado pro-inflamatorio y la activación inmune que se asocian a la replicación viral persistente.

En la cohorte D.A.D.²²⁶ y en la cohorte CASCADE²²⁷ se ha comunicado que existe una disminución progresiva del riesgo de enfermedades no relacionadas con el VIH-1 a medida que aumenta la cifra de células CD4[†]. Los pacientes que presentan el menor riesgo de desarrollar enfermedades no definitorias de sida son los que mantienen una cifra de linfocitos CD4[†] mayor de 350 células/μL.

En el ensayo clínico SMART²²⁸ la incidencia de enfermedades no relacionadas con sida aumentó significativamente en el grupo de pacientes que suspendieron el TAR cuando la cifra de linfocitos $CD4^+$ era menor de 350 células/ μ L. En el ensayo clínico $FIRST^{225}$ también se ha puesto de manifiesto una relación entre la cifra de linfocitos $CD4^+$ y el riesgo de desarrollar enfermedades no definitorias de sida, siendo menor el riesgo en aquellos pacientes que mantuvieron la cifra de linfocitos $CD4^+$ por encima de 350 células/ μ L.

Subgrupos con mayor riesgo de progresión

En diferentes estudios se ha observado que determinados subgrupos de pacientes, como los UDVP, los coinfectados por el VHC, los varones y los de edad avanzada, tienen mayor riesgo de mortalidad y/o progresión a sida independientemente de la cifra de linfocitos CD4⁺ al iniciar el TAR^{10,229-231}. Aunque no se ha establecido claramente un corte de edad a partir del cual sea más beneficioso iniciar el TAR, los estudios observacionales sugieren que el riesgo de progresión está aumentado por encima de los 55-60 años de edad²³².

En un estudio con pacientes con un recuento de linfocitos CD4⁺ entre 200 y 350 células/ μ L, se observó una relación independiente entre el porcentaje de CD4⁺ al inicio del TAR y la supervivencia²³³; tomando como referencia a los pacientes cuya proporción de linfocitos CD4⁺ era \geq 15%, la supervivencia fue más corta en los que tenían porcentajes <5% (*HR* 4,46) y entre 5-14% (*HR* 2,43). Sin embargo, en la cohorte PISCIS el porcentaje de linfocitos CD4⁺ no fue un factor independiente asociado al riesgo de progresión¹⁰.

Respuesta inmunológica

Hay datos contradictorios sobre si existe un límite en la reconstitución inmunológica de los pacientes que reciben TAR. Los trabajos al respecto llevados a cabo en la cohorte del Hospital Johns Hopkins y en la cohorte ATHENA^{233,234}, ambas con una mediana de seguimiento de los pacientes de hasta siete años después del inicio de TAR, sugieren que la posibilidad de alcanzar cifras normales de linfocitos CD4⁺ depende de la cifra de partida de éstos. En ambas cohortes, sólo aquellos pacientes que iniciaron el TAR con un cifra de linfocitos CD4⁺ superior a 350 células/µL se aproximaron a la normalización cuantitativa de CD4⁺; sin embargo, los datos de la cohorte Eurosida sugieren que se puede normalizar el número de linfocitos CD4⁺, independientemente del nadir alcanzado, si la replicación viral persiste suprimida por debajo de 50 copias/mL de forma prolongada²³⁵. En el ensayo clínico HPTN 052, comentado anteriormente, la media de linfocitos CD4⁺ en la visita basal del estudio fue de 449 células/μL en ambos brazos de tratamiento; sin embargo, en la visita de seguimiento del mes 45 (con casi cuatro años de seguimiento) la media era de 742 células/µL en el grupo de TAR precoz (entre 350 y 550 linfocitos CD4 $^+$ / μ L) y 400 células/ μ L en el grupo de TAR diferido (<250 linfocitos CD4 $^+/\mu$ L)¹⁵².

Toxicidad del TAR

Un argumento para diferir el TAR es evitar la toxicidad asociada al uso de FAR. Sin embargo, en un estudio reciente con más de 2.000 pacientes seguidos durante más de 3

años se observó una menor incidencia de neuropatía periférica, anemia, insuficiencia renal y lipodistrofia en los que iniciaron el TAR con cifras de linfocitos CD4+ superiores a 350 células/ μ L que en los que lo empezaron entre 200 y 350 células/ μ L²³⁶.

TAR para reducir la transmisión del VIH-1

Estos aspectos se tratan en el capítulo de "Prevención de la transmisión".

Recomendaciones

- El inicio del TAR debe basarse en los siguientes elementos: manifestaciones clínicas, número de linfocitos CD4⁺, CVP y presencia de comorbilidades (A-II)
- En caso de infección sintomática (eventos clínicos B o C de la clasificación de los CDC de 2003) se recomienda iniciar el TAR en todos los casos (A-I)
- Si la infección es asintomática el inicio del TAR se basa en el número de linfocitos CD4⁺, la CVP o en determinadas comorbilidades o características del paciente (Tabla 3):
 - Si la cifra de linfocitos $CD4^+$ es inferior a 500 células/ μL se recomienda iniciar el TAR (A-I)
 - Si el número de linfocitos CD4⁺ es mayor de 500 células/μL se desconoce actualmente si es mejor iniciar el TAR o diferirlo; sin embargo debe ser recomendado en los pacientes con determinadas comorbilidades (cirrosis hepática, hepatitis crónica por VHC, CVP >10⁵ copias/mL, proporción de linfocitos CD4⁺ inferior al 14%, edad ≥55 años, riesgo cardiovascular elevado y trastornos neurocognitivos, entre otras) (C-III)
- En pacientes asintomáticos e independientemente del número de linfocitos CD4⁺, se recomendará inicio del TAR
 - En parejas serodiscordantes con alto riesgo de transmisión por vía sexual para reducir el riesgo (A-I). En ningún caso ello debe suponer la abstención de otras medidas para impedir la transmisión del VIH-1 (A-II)
 - En mujeres gestantes, para prevenir la transmisión materno fetal (A-I)
 - En la nefropatía VIH (A-II)
 - En la hepatitis B que requiere tratamiento (A-II)
- A pesar de las consideraciones previas, el inicio del TAR debe valorarse siempre individualmente. Antes de tomar la decisión de iniciarlo deben confirmarse la cifra de linfocitos CD4⁺ y de CVP. Además, debe prepararse al paciente, ofertando las distintas opciones, adaptando el esquema terapéutico al estilo de vida, comorbilidades, posibles interacciones y valorando el riesgo de mala adherencia (A-III)

4.2. ¿Qué combinación de antirretrovirales debe utilizarse?

El tratamiento de elección de la infección por el VIH-1 en el momento actual consiste en una combinación de al menos tres fármacos que incluyan dos ITIAN asociado a un IP/r, un ITINN o un InInt (tabla 4). Con la mayoría de estas combinaciones se puede conseguir una CVP <50 copias/mL en >70% de los casos a las 48 semanas²³⁷.

Consideraciones sobre la elección de un ITINN, un IP/r o InInt

La elección de una u otra familia tiene ciertas ventajas sobre otras: 1) Interacciones farmacológicas (de menos a más): InInt, ITINN, IP/r; 2) Mayor barrera genética: IP/r; 3) Menor coste: ITINN (además el momento idóneo del uso de los ITINN de primera generación es el tratamiento inicial ya que en las pautas de rescate tienen menos actividad que otras familias de FAR).

Recomendación

Puede utilizarse la combinación de 2 ITIAN+1 ITINN, 2 ITIAN+1 IP/r ó 2 ITIAN+InInt como tratamiento de inicio (los fármacos preferentes se detallan más adelante) (A-I) (Tabla 4)

4.3. Inhibidores de la transcriptasa inversa análogos de nucleósido

Consideraciones generales

En España están comercializados 6 ITIAN: zidovudina (AZT), didanosina (ddI), estavudina (d4T), lamivudina (3TC), emtricitabina (FTC) y abacavir (ABC). También se dispone de un análogo de nucleótido, tenofovir (TDF). A efectos prácticos, la abreviatura ITIAN incluye también al TDF en esta guía. Las principales características de los ITIAN se describen en Tabla 5^{4, 238,239}.

Por las consideraciones que se detallan en los párrafos que siguen, los miembros de este panel consideran como combinaciones de ITIAN de elección las formadas por TDF/FTC y por ABC/3TC y combinaciones alternativas a TDF+3TC, ddI+3TC, AZT/3TC, ddI+FTC, AZT+ddI. No se recomiendan las combinaciones d4T+ddI por toxicidad, TDF+ddI por toxicidad y menor eficacia²⁴⁰⁻²⁴², AZT+d4T por antagonismo, FTC+3TC por tener similar perfil de resistencias y pocos beneficios clínicos.

Las combinaciones TDF/FTC, ABC/3TC y ddI+3TC pueden administrarse una vez al día; de ellas las dos primeras se presentan coformuladas en un solo comprimido.

Combinaciones de ITIAN de elección

a. Combinaciones con TDF/FTC (o 3TC)

En el estudio Gilead 903 con EFV como tercer fármaco, la combinación de TDF/FTC fue más eficaz y menos tóxica (toxicidad mitocondrial, neuropatía periférica, lipoatrofia, dislipemia) que 3TC+d4T²⁴³. En el estudio Gilead 934, con EFV como tercer fármaco, la combinación de TDF/FTC también resultó más eficaz, menos tóxica (anemia, dislipe-

mia, lipoatrofia) y se asoció con mayor ganancia de CD4 que AZT/3TC²⁴⁴.

b. Combinaciones con ABC/3TC

En el estudio CNA30024 con EFV como tercer fármaco, ABC+3TC BID tuvo una eficacia similar a AZT/3TC; sin embargo el incremento de linfocitos CD4⁺ fue mayor con ABC+3TC²⁴⁵. En el estudio CNA30021 con EFV como tercer fármaco, se demostró la noinferioridad de ABC QD frente a ABC BID en combinación con 3TC QD²⁴⁶. En el estudio ABCDE con EFV como tercer fármaco, ABC/3TC fue más eficaz y produjo menos lipoatrofia que 3TC+d4T²⁴⁷.

c. Combinaciones con TDF/FTC frente a combinaciones con ABC/3TC

El estudio HEAT fue un ensayo clínico doble ciego con 688 pacientes sin TAR previo que comparó ABC/3TC (600/300 mg) QD con TDF/FTC (300/200 mg) QD, ambos en combinación con LPV/r en cápsulas de 800/200 mg, QD²⁴⁸. La proporción de pacientes con CVP <50 copias/mL en la semana 48 fue 68% en el grupo ABC/3TC y 67% en el grupo TDF/FTC, y la proporción de pacientes con CVP <50 copias/mL en la semana 96 fue 60% y 58%, respectivamente; con lo que se pudo demostrar la no inferioridad de ABC/3TC frente a TDF/FTC en ambos momentos. Además, la eficacia de ambas combinaciones fue similar en pacientes con CVP basal ≥100.000 copias/ml o con cifra de linfocitos CD4⁺ <50 células/μL. La frecuencia de fracaso virológico a las 96 semanas fue del 14% en ambos grupos y se documentó retirada prematura del estudio por efectos adversos en un 6% en ambos grupos. En la semana 96 la mediana del incremento de linfocitos CD4⁺ fue 250 células/μL en el grupo de ABC/3TC y 247 células/μL en el grupo de TDF/FTC.

El estudio ACTG 5202 fue un ensayo clínico factorial que comparó ABC/3TC y TDF/FTC (a doble ciego) en 1.857 pacientes sin TAR previo. Los pacientes fueron aleatorizados además a recibir ATV/r o EFV (de forma abierta)²⁴⁹. En este estudio, la variable principal de eficacia fue el tiempo desde la aleatorización hasta el fracaso virológico, definido como a) una CVP ≥1.000 copias/mL en la semana 16 o entre las semanas 16 y 24, o b) una CVP ≥200 copias/mL en o después de la semana 24. El comité de seguridad decidió abrir el ciego para los pacientes con CVP basal ≥100.000 copias/mL tras observar diferencias en eficacia entre los dos grupos de ITIAN. Tras una mediana de seguimiento de 60 semanas, entre los 797 pacientes con CVP ≥100.000 copias/mL el tiempo hasta el fracaso virológico fue más corto en el brazo de ABC/3TC que en el brazo de TDF/FTC (HR, 2,33; IC 95%, 1,46 a 3,72; p <0,001) con 57 fracasos virológicos (14%) en el grupo de ABC/3TC frente a 26 (7%) en el grupo de TDF/FTC. Además, el tiempo hasta el primer efecto adverso de grado 3-4 fue más corto en el grupo de ABC/3TC que en el grupo de TDF/FTC. No se documentaron diferencias significativas entre los grupos con respecto al incremento de linfocitos CD4⁺ en la semana 48. El estudio ACTG 5202 demostró, por tanto, que entre los pacientes con CVP basal ≥100.000 copias/mL tanto el tiempo hasta el fracaso virológico como el tiempo hasta el primer efecto adverso de grado 3-4 fueron más cortos en los pacientes que recibieron ABC/3TC que en los que recibieron TDF/FTC. En los pacientes con CVP basal <100.000 copias/mL no hubo diferencias en eficacia virológica entre ABC/3TC y TDF/FTC, independientemente de que se administraran con ATV/r o EFV^{250,251}.

El estudio ASSERT es un ensayo clínico abierto en el que se compararon los perfiles de seguridad de TDF/FTC y ABC/3TC (ambos administrados con EFV) en pacientes HLA-B*5701-negativos. Los cambios de filtrado glomerular fueron similares en ambas ramas, mientras que la excreción urinaria de beta-2-microglobulina y de proteína unida al retinol (*retinol-binding protein*) fue significativamente mayor en la rama de TDF/FTC. En este estudio lograron una CVP <50 copias/mL a las 48 semanas más pacientes aleatorizados a TDF/FTC (137/193; 71%) que aleatorizados a ABC/3TC (114/192; 59%) (diferencia 11,6%; IC 95%: 2,2-21,1)²⁵².

Se ha publicado un meta-análisis de 12 ensayos clínicos que han comparado ABC/3TC (1.769 pacientes) con TDF/FTC (3.399 pacientes) formando parte de pautas de TAR de inicio en combinación con IP/r. En los ensayos que utilizaron LPV/r, ATV/r y FAPV/r como tercer fármaco, la frecuencia de supresión virológica a las 48 semanas fue significativamente inferior para ABC/3TC que para TDF/FTC (68,8% frente a 76,1%, p= 0,0015). En los pacientes con CVP <100.000 copias/mL la eficacia fue menor para ABC/3TC que para TDF/FTC (70,1% frente a 80,6%, p= 0,0161), mientras que para los pacientes con CVP >100.000 copias/mL la diferencia no alcanzó la significación estadística (67,5% frente a 71,5%, p= 0,0523) 253 .

Reacción de hipersensibilidad a ABC

En el pasado, el principal inconveniente que limitaba el uso de ABC era el desarrollo de una reacción de hipersensibilidad (RHS) que afectaba al 5-8% de los pacientes expuestos al fármaco durante las primeras 6 semanas de tratamiento²⁵⁴. El ensayo clínico PREDICT demostró que la incidencia de RHS a ABC puede disminuir drásticamente mediante la genotipificación del HLA- B5701¹¹⁴. En este ensayo clínico la prueba de genotipificación del HLA-B*5701 tuvo un valor predictivo negativo del 100% para descartar la RHS a ABC confirmada mediante una prueba cutánea. No obstante, la ficha técnica del fármaco refleja que un 3,4% de los sujetos con un estatus HLA negativo que recibieron ABC desarrollaron una RHS (no confirmada).

Seguridad cardiovascular de ABC

En la cohorte D:A:D se observó que el uso reciente (pero no el acumulado) de ABC (definido como estar recibiéndolo en el momento actual o haberlo suspendido durante los últimos 6 meses) se asoció con un incremento de 1,9 veces en el riesgo de padecer un infarto de miocardio (comparado con los pacientes que no han utilizado recientemente ABC). Esta asociación persistía después del ajuste por otros factores de riesgo. El aumento del riesgo de infarto de miocardio fue más relevante desde el punto de vista clínico en aquellos pacientes que ya tenían un riesgo cardiovascular alto según la ecuación de Framingham. En este estudio también se encontró un incremento significativo del riesgo de infarto de miocardio asociado al uso reciente de ddl, si bien la magnitud de la asociación fue menor²⁵⁵. En el estudio SMART, también se observó una asociación entre uso de ABC y riesgo de ECV en el grupo de pacientes aleatorizados a recibir TAR de manera continua; en este estudio, el riesgo de infarto de miocardio fue más evidente en los pacientes con factores de riesgo o con alteraciones electrocardiográficas en el momento basal²⁵⁶. La asociación entre uso de ABC y riesgo de infarto de miocardio también se ha observado en un estudio de cohorte nacional llevado a cabo en

Dinamarca en el que se incluyeron a todos los pacientes que recibieron TAR desde 1995 a 2005²⁵⁷. En un estudio de casos y controles efectuado en el seno de la *French Hospital Database on HIV* se observó que la exposición reciente a ABC se asociaba con mayor riesgo de infarto agudo de miocardio pero que tal asociación desaparecía en los pacientes que no usaban cocaína o drogas por vía intravenosa²⁵⁸.

La FDA ha comunicado los resultados de un metaanálisis de 26 ensayos clínicos aleatorizados efectuados en adultos entre 1996 y 2010 (16 patrocinados por el fabricante, 5 por los ACTG y 5 por centros académicos). En dichos ensayos clínicos se documentaron 46 infartos de los que 24 ocurrieron en 5.028 sujetos aleatorizados a pautas con ABC y 22 en 4.840 pacientes aleatorizados a pautas sin ABC. No se observó una asociación significativa entre infarto agudo de miocardio y ABC (Mantel-Haenszel OR: 1,02; IC 95%: 0,56-1,84)²⁵⁹. Del mismo modo, en una revisión de 52 ensayos clínicos con ABC esponsorizados por GlaxoSmithKline se revisó la información de 14.174 pacientes, de los que 9.639 habían recibido ABC (7.485 personas-año de seguimiento) y 4.672 no lo habían recibido (4.267 personas-año de seguimiento). Ambos grupos eran comparables en cuanto a características demográficas y variables relacionadas con el VIH-1, lípidos y glucosa. La frecuencia de infarto de miocardio fue similar entre los expuestos (2,09 x 1.000 personas-año) y los no expuestos a ABC (2,57 x 1.000 personas-año)²⁶⁰. Tampoco se ha observado que el tratamiento con ABC aumente el riesgo de infarto en un metaanálisis de ensayos clínicos llevado a cabo por investigadores independientes²⁶¹, ni en una revisión de los ensayos clínicos llevados a cabo en el seno de los ACTG²⁶².

Combinaciones de ITIAN alternativas

a. Combinación de AZT/3TC

La combinación de AZT/3TC ha sido bien evaluada en el estudio ACTG-384, de diseño factorial, en el que se investigó eficacia y tolerabilidad de distintas combinaciones de ITIAN cuando se asocian a un tercer fármaco (ITINN o IP). Desafortunadamente el diseño factorial se frustró por el hecho de que las combinaciones de ITIAN no fueron independientes del efecto del tercer fármaco. Sin embargo, de los datos de este estudio se puede hacer dos observaciones con respecto a las combinaciones de ITIAN: 1ª) desde el punto de vista de la eficacia virológica es mejor empezar con AZT/3TC+EFV que con d4T+ddI+EFV o con AZT/3TC+NFV; y 2ª) d4T+ddI resultó más tóxica que AZT/3TC^{263,264}.

b. Combinación de ddI+3TC

La combinación de ddI+3TC ha sido bien evaluada en el estudio GeSIDA 3903 con EFV como tercer fármaco²⁶⁵. En dicho estudio, la combinación de ddI+3TC en pauta QD fue no inferior desde el punto de vista de la eficacia a AZT/3TC. La discontinuación del tratamiento por efectos adversos fue menor en el grupo de ddI+3TC así como la toxicidad hematológica. No hubo diferencias entre ambas pautas en cuanto a la recuperación inmunológica ni en la prevalencia de lipoatrofia y/o lipoacumulación, valoradas por criterios del investigador.

Resumen de los datos de ensayos y cohortes

La combinación TDF/FTC es más eficaz y tiene un menor riesgo de lipoatrofia que la combinación AZT/3TC.

La combinación ABC/3TC tiene una eficacia similar a AZT/3TC con menor riesgo de lipoatrofia y ha demostrado la no inferioridad frente a la pauta TDF/3TC cuando ambas se administran con LPV/r.

Es posible que el riesgo de fracaso virológico sea mayor con la pauta ABC/3TC que con la pauta TDF/3TC en pacientes con CVP elevada cuando ABC/3TC se administra con EFV o ATV/r.

No se han realizado grandes estudios de la combinación TDF+3TC con un IP/r como tratamiento inicial, pero sí de TDF/FTC (con ATV/r, FPV/r, LPV/r, DRV/r y SQV/r). No existe experiencia de ensayos clínicos de la combinación ABC/3TC con NVP, pero sí con ATV/r, LPV/r, FPV/ $r^{266-267}$.

La combinación ddI+3TC asociada a EFV no es inferior a AZT/3TC+ EFV²⁶⁵. No hay datos sobre el riesgo de lipoatrofia medida por DEXA de la combinación ddI+3TC.

No existe experiencia de las combinaciones ddI+FTC con NVP ni con IP.

La combinación d4T+3TC ha demostrado su eficacia en múltiples estudios, pero produce más alteraciones del metabolismo de los lípidos, lipodistrofia y neuropatía periférica que la combinación TDF+3TC.

Recomendaciones sobre ITIAN

Combinaciones preferentes

- Las combinaciones de ITIAN de elección para regímenes de inicio son TDF/FTC o ABC/3TC (A-I). Se recomienda el uso de nucleósidos coformulados (A-I)
- La combinación TDF/FTC debe utilizarse con precaución en pacientes con insuficiencia renal (B-II)
- La combinación ABC/3TC debe ser empleada con precaución en pacientes con CVP elevada (>100.000 copias/mL), especialmente si el tercer fármaco es un ITINN (A-I)

Combinaciones de TAR con tres o cuatro ITIAN

Las combinaciones de tres ITIAN han demostrado eficacia virológica e inmunológica en varios estudios. Existe una coformulación con la asociación AZT/3TC/ABC que permite su administración en forma de un comprimido BID, pauta atractiva desde el punto de vista de la adherencia.

a. Combinación de AZT/3TC/ABC

En el estudio ACTG A5095 se comparó la eficacia y seguridad de tres pautas de inicio: AZT/3TC/ABC (Trizivir®), AZT/3TC+EFV y AZT/3TC/ABC+EFV. A las 48 semanas la proporción de pacientes con CVP <200 copias/mL (ITT) era del 74% en el brazo con 3 ITIAN

y 89% en los otros dos brazos y por este motivo el comité de seguridad recomendó que el grupo de AZT/3TC/ABC se interrumpiese, continuando el estudio de forma ciega con los pacientes en los brazos que contenían EFV²⁶⁹. A los tres años de seguimiento, la pauta AZT/3TC/ABC+EFV no demostró ser superior a la pauta AZT/3TC+EFV²⁷⁰. En el estudio CNA3005, el TAR de inicio con AZT/3TC/ABC resultó equivalente a AZT/3TC+IDV para alcanzar una CVP <400 copias/mL a 48 semanas; sin embargo en los pacientes con CVP >100.000 copias/mL, el régimen con ABC fue inferior al de IDV para conseguir CVP inferior a 50 copias/mL²⁷¹.

b. Combinación de AZT/3TC/ABC+TDF

En un estudio multicéntrico español no comparativo en el que se inició TAR a pacientes con 4 ITIAN (Trizivir +TDF), con seguimiento hasta la semana 96, la proporción de pacientes con CVP <50 copias/mL fue del 63% (ITT) y 87% (OT). Los resultados fueron mejores si la CVP era <5 \log_{10} o la cifra de linfocitos CD4 superior a250 células/ μ L²⁷². En el estudio TIMS se comparó la combinación de 4 ITIAN (Trizivir +TDF) frente a AZT/3TC+EFV en 113 pacientes. Tras 48 semanas de seguimiento, la proporción de pacientes con CVP <50 copias/mL fue del 67% (ITT) en el grupo de 4 ITIAN y del 67% en el grupo de AZT/3TC + EFV²⁷³.

c. Otras pautas basadas en tres ITIAN

En el estudio CLASS se comparó la eficacia virológica de una pauta basada en ABC/3TC en combinación con EFV, APV/r o d4T. En la semana 48 la pauta con EFV resultó superior a APV/r y a d4T (proporción de pacientes con CVP <50 copias/mL: 76%, 59% y 62%, respectivamente, con un análisis por ITT)²⁷⁴.

En el estudio ESS30009, la respuesta virológica de TDF/3TC/ABC administrado QD fue inferior a ABC/3TC+EFV. En los casos con fracaso virológico, todas las cepas de los pacientes del brazo de TDF/3TC/ABC tenían la mutación M184V y más de la mitad tenían la K65R, que puede reducir la susceptibilidad a TDF y ABC²⁷⁵.

En un estudio piloto con ddI+3TC+TDF, el 91% de los pacientes tuvieron un fracaso virológico (descenso de la CVP \leq 2 log₁₀ en la semana 12). La mutación M184I/V se detectó en el 95% de los pacientes y el 50% tenían también la K65R.

Comparando la eficacia y tolerabilidad de d4T+ddI+ABC frente a SQV+RTV (400/400mg BID)+AZT+3TC frente a NFV+NVP+AZT+3TC, se estudiaron 180 pacientes con una mediana de linfocitos $CD4^{+}$ de 161 células/ μ L y de CVP de 5 log_{10} . A las 48 semanas, la proporción de pacientes con CVP <20 copias/mL fue inferior en el grupo de tres ITIAN que en los otros dos (43%, 62% y 69%, respectivamente) y los efectos secundarios fueron más frecuentes en este grupo²⁷⁶.

4.4. Inhibidores de la transcriptasa inversa no nucleósidos (ITINN)

En España hay tres ITINN comercializados (nevirapina, efavirenz, etravirina) $\frac{1}{2}$ otro cuya comercialización ha sido aprobada el 29 de enero de 2013 (rilpivirina). Sus principales características se describen en la Tabla $6^{238,239}$. Son inductores de algunos isoenzimas del citocromo P450, pudiendo interaccionar con otros fármacos. EFV se administra en

pauta QD (1 comprimido de 600 mg/día) y NVP se puede administrar tanto en pauta QD (400 md/d) como BID (200 mg/ 12 horas), aunque durante los primeros 14 días se administra 1 comprimido al día. ETR se administra en BID (200 mg/12 horas) o QD (400 mg/24 horas). ETR no está aprobada por la EMA para TAR de inicio. La dosis aprobada de RPV es 25 mg (1 comprimido) una vez al día.

Pautas con NVP

En el ensayo ARTEN se comparó la eficacia y seguridad de NVP administrada BID o QD frente a ATV/r, ambos combinados con TDF/FTC²⁷⁷. La variable primaria de evaluación fue una CVP <50 copias/ml en dos visitas consecutivas antes de la semana 48. Se aleatorizaron 569 pacientes y lograron el objetivo primario 66,8% de los tratados con NVP y 65,3% de los tratados con ATV/r (diferencia: 1,9%; IC 95%: -5,9 a 9,8%). Ninguno de los 28 pacientes con fracaso virológico del brazo de ATV/r seleccionó cepas de VIH-1 con mutaciones de resistencia mientras que ello ocurrió en 29 de los 44 pacientes con fracaso virológico del brazo de NVP. Se documentó una frecuencia similar de efectos adversos graves (9,6% con NVP y 8,8% con ATV/r), aunque las retiradas motivadas por efectos adversos resultaron más frecuentes con NVP que con ATV/r (13,6% frente a 3,6%, respectivamente). En comparación con los pacientes tratados con ATV/r, los que recibieron NVP experimentaron un mayor incremento de colesterol-HDL y apolipoproteína A1, un menor incremento en la cifra de triglicéridos y un menor incremento en el índice colesterol total/colesterol HDL.

Los estudios OCTANE comparan el tratamiento con NVP frente a LPV/r, ambos con TDF/FTC, en mujeres de varios países africanos con una cifra de linfocitos CD4⁺ inferior a 200 células/µL. La variable principal fue el tiempo desde la aleatorización hasta la muerte o fracaso virológico (definido como descenso de CVP <1 log₁₀ en la semana 12 o CVP >400 copias/mL en la semana 24). En el OCTANE 1 se aleatorizaron 234 mujeres que habían recibido al menos una dosis de NVP en los 6 meses previos para prevención de la trasmisión madre-hijo. El estudio se interrumpió a las 66 semanas de seguimiento al documentarse que LPV/r era más eficaz que NVP y con menos efectos adversos²⁷⁸. El OCTANE 2 se designó para demostrar equivalencia (definida como unos IC 95% de la HR comprendidos entre 0,5 y 2,0) entre las dos ramas. Se aleatorizaron 500 mujeres (249 a NVP y 251 a LPV/r) que no habían tomado previamente NVP. Las características basales eran similares. El seguimiento medio fue de 118 semanas. Se perdieron 14 mujeres de la rama de NVP y 6 de la de LPV/r. El objetivo del estudio lo consiguieron 42 (17%) mujeres de la rama de NVP y 50 (20%) del LPV/r (HR 0,85; IC 95%, 0,56 a 1,29), cumpliendo, pues, el criterio de equivalencia (análisis por ITT). Se analizaron por separado el fracaso virológico y la mortalidad (15% frente a 17% y 2% frente a 3%) de las ramas con NVP y LPV/r. Globalmente 93 mujeres discontinuaron el tratamiento (70 [28%] en la rama de NVP y 23 [9%] en la de LPV/r). Lo hicieron por efectos adversos relacionados con el fármaco 35 (14%) de las tratadas con NVP y ninguna de las de LPV/r²⁷⁹.

En el ensayo Combine se comparó la eficacia de NVP frente a NFV²⁸⁰. Es de destacar que este ensayo no tenía suficiente poder estadístico para evaluar la equivalencia entre ambas pautas. El número de pacientes incluidos con CVP elevada (>100.000 copias/mL) fue bajo y no se observaron diferencias entre NVP y NFV. En una recopilación

de diversos estudios con NVP en pacientes sin TAR previo el 83% de los que tenían CVP >100.000 copias/mL presentaban CVP indetectable a los 6 meses²⁸¹.

Pautas con EFV

En el estudio ACTG 5202, se comparó la eficacia, seguridad y tolerabilidad de ABC/3TC o TDF/FTC (doble ciego) en combinación con ATV/r o EFV (en abierto). Tal y como se comentó anteriormente, el comité de seguridad decidió abrir el ciego en los pacientes con CVP >100.000 copias/mL tras documentar un tiempo más corto hasta el fracaso virológico en el brazo de ABC/3TC que en el brazo de TDF/FTC, hallazgo que fue comunicado en una primera publicación 249. Posteriormente, los autores han comunicado la comparación entre ATV/r (463 pacientes con ABC/3TC y 465 con TDF/FTC) y EFV (465 pacientes con ABC/3TC y 464 con TDF/FTC)²⁵¹. Los investigadores compararon los tiempos hasta el fracaso virológico (eficacia), hasta el primer efecto adverso grado 3 o 4 (seguridad), y hasta el cambio o discontinuación de ATV/r o EFV (tolerabilidad). La eficacia virológica resultó similar en los tratados con ATV/r que en los tratados con EFV independientemente que recibieran ABC/3TC o TDF/FTC [HR para el tiempo hasta el fracaso virológico 1,13 (IC 95%: 0,82-1,56) y 1,01 (IC 95%: 0,70-1,46), respectivamente]. Entre los pacientes que experimentaron fracaso virológico, la emergencia de cepas con mutaciones de resistencia fue significativamente menos frecuente en los pacientes tratados con ATV/r que entre los tratados con EFV, independientemente de la pareja de ITIAN que estuvieran recibiendo. El tiempo hasta el primer evento de seguridad y el primer evento de tolerabilidad fue significativamente más largo para los pacientes con ATV/r que para los pacientes con EFV cuando la pareja de ITIAN era ABC/3TC, pero no hubo diferencias en seguridad ni tolerabilidad entre ATV/r y EFV cuando la pareja de ITIAN era TDF/FTC. Los autores concluyeron que ATV/r y EFV tienen una actividad antiviral similar cuando se combinan con ABC/3TC o TDF/FTC²⁵¹. Se han comunicado resultados de un subestudio metabólico (cambios en grasa y densidad mineral ósea) que se exponen en capítulos posteriores.

El estudio ACTG 5142 es un ensayo clínico aleatorizado cuyo objetivo era valorar la eficacia y tolerancia de tres regímenes de tratamiento: LPV/r+2 ITIAN, EFV+2 ITIAN y LPV/r+ EFV. Se incluyeron 753 pacientes con una mediana de CD4 de 182 células/μL y CVP de 100.000 copias/mL. Los puntos finales de valoración fueron: 1º) Fracaso virológico: a) fracaso temprano: imposibilidad de reducir la CVP >1 log₁₀ o rebrote antes de la semana 32; y b) fracaso tardío: imposibilidad de suprimir la CVP por debajo de 200 copias/mL o rebrote después de la semana 32. 2º) Finalización del régimen: fracaso virológico o suspensión relacionada con la toxicidad. En la semana 96 la proporción de pacientes sin fracaso virológico fue de 67, 76 y 73% para los grupos de LPV/r+2 ITIAN, EFV+2 ITIAN y LPV/r+EFV, respectivamente. En este corte, la proporción de pacientes con CVP <200 copias/mL (ITT) fue de 86, 93, 92 % para cada rama de tratamiento (p=0,041, LPV frente a EFV), y con CVP <50 copias/mL fue de 77, 89 y 83%, respectivamente (p=0,003; LPV frente a EFV). El incremento de linfocitos CD4⁺ fue mayor en los brazos que contenían LPV/r frente al brazo de EFV (p = 0,01 frente EFV+2 ITIAN. Los datos de resistencias indican que en caso de fracaso virológico, es más probable que aparezcan resistencias a dos clases de fármacos en el grupo de EFV+2 ITIAN que en los grupos de LPV/r, mientras que hipertrigliceridemia fue más frecuente en los pacientes con LPV/r+EFV. En resumen, el estudio ACTG 5142, demuestra que tanto la eficacia

virológica como el tiempo hasta el fracaso virológico son mejores con la pauta de EFV + 2 ITIAN y el incremento de los linfocitos CD4⁺ es mayor en los brazos con LPV/r²⁸².

En el estudio DMP-006 se ha demostrado que EFV, combinado con AZT/3TC tiene una mayor eficacia virológica que IDV+AZT/3TC²⁸³. En el estudio ACTG 384 se demostró que la combinación de EFV+AZT/3TC es más eficaz que NFV+AZT/3TC y que NFV+ddI+d4T²⁶³. En el ensayo FOCUS se demostró que una pauta con EFV + 2 ITIAN era más eficaz y menos tóxica que una pauta con SQV/r (1600/100, QD)+2 ITIAN²⁸⁴. En el estudio BMS AI424-034 se demostró que ATV (400 mg, QD)+AZT/3TC fue tan eficaz como EFV+AZT/3TC; sin embargo los resultados de este estudio son difíciles de interpretar por un error en la determinación de la CVP relacionado con el procesamiento y tipo de tubos empleados para el transporte de muestras²⁸⁵. Como ya se ha comentado previamente, el estudio ACTG-A5095 demostró que las combinaciones de fármacos de 2 familias (EFV+AZT/3TC o EFV+AZT/3TC/ABC) son más eficaces que la combinación de 3 ITIAN (AZT/3TC/ABC)²⁶⁹. En el ensayo clínico CLASS se comparó d4T, EFV y APV/r cada uno en combinación con ABC/3TC; el brazo con EFV+ABC/3TC fue el que logró mayor eficacia virológica definida como la proporción de pacientes con CVP <50 copias/mL en la semana 24 y 48 del estudio²⁷⁴.

En un estudio aleatorizado, doble ciego, controlado con placebo, se comparó ETR 400 mg QD con EFV 600 mg QD (ambos en combinación con dos ITIAN) en pacientes sin tratamiento previo. Se aleatorizaron 79 pacientes en el brazo de ETR y 78 en el de EFV respectivamente. El objetivo primario fue evaluar la tolerabilidad neuropsiquiátrica en la semana 12. Como objetivo secundario, se planteaba observar la eficacia virológica de ambos tratamientos a las 48 semanas. Los efectos adversos fueron significativamente más frecuentes en los pacientes que tomaban EFV que en los que tomaban ETR. A las 48 semanas, 76% de los pacientes con ETR y 74% de EFV presentaban una carga viral indetectable (CVP <50 copias/ml). Estos resultados sugieren que ETR en dosificación QD podría ser una opción como primer tratamiento. Sin embargo, ETR no dispone de indicación en este tipo de paciente. Serán necesarios más estudios con un mayor número de pacientes²⁸⁶.

La combinación de EFV/FTC/TDF como TAR de inicio también ha sido evaluada en los estudios GS-US-236-0102 y SINGLE. El estudio 102 es un ensayo clínico aleatorizado y doble ciego que comparó dos regímenes administrados en pastilla única: EVG/COBI/FTC/TDF y EFV/FTC/TDF. La variable primaria de evaluación fue la proporción de pacientes con CV < 50 copias/mL en semana 48 por un análisis ITT, según el algoritmo Snapshot de la FDA. Se trataron 700 pacientes y lograron el objetivo primario 305/348 (87,6%) de los tratados con EVG/COBI/FTC/TDF y 296/352 (84,1%) de los tratados con EFV/FTC/TDF (diferencia: 3,6%; IC 95%: -1,6% a 8,8%), confirmándose la no inferioridad de la pauta experimental frente al comparador. El tratamiento con EVG/COBI/FTC/TDF produjo significativamente más nauseas pero menos mareos, sueños anormales, insomnio y exantema. No hubo, sin embargo, diferencias significativas en lo que respecta a retirada del tratamiento por efectos adversos entre ambos brazos de tratamiento. El incremento en la creatinina sérica en la semana 48 fue mayor en los tratados con EVG/COBI/FTC/TDF que en los tratados con EFV/FTC/TDF [mediana (RIQ): 13 (5-20) μmol/L frente a 1 μmol/L (-6; 8) p<0,001)], lo que probablemente se debe a cambios en la secreción tubular de creatinina y no a un efecto directo sobre el filtrado glomerular²⁸⁷. En el estudio SINGLE se comparó la combinación coformulada de EFV/FTC/TDF con una combinación del inhibidor de la integrasa experimental dolutegravir (DGV), ABC y 3TC (DGV+ABC/3TC). El diseño fue doble ciego, y la variable primaria de evaluación fue la proporción de pacientes con CVP <50 copias/mL en semana 48 por un análisis ITT, según el algoritmo *Snapshot* de la FDA, con un margen de no inferioridad del -10% y con tests pre-especificados para superioridad. Se trataron 833 pacientes y lograron el objetivo primario el 88% de los tratados con DTG+ABC/3TC y el 81% de los tratados con EFV/FTC/TDF (diferencia: 7,4%; IC 95%: 2,5-12,3%), confirmándose no solo la no-inferioridad sino también la superioridad de DTG+ABC/3TC sobre EFV/FTC/TDF. La proporción de fracaso virológico fue similar en ambos brazos (aproximadamente 4%). La proporción de interrupciones del tratamiento por efectos adversos fue, sin embargo, mayor en el brazo de EFV/FTC/TDF (10%) que en el brazo de DTG+ABC/3TC (2%). La detección de mutantes resistentes tras el fracaso virológico fue muy baja en ambos brazos de tratamiento, particularmente en el brazo de DTG+ABC/3TC, en el que no se detectaron mutaciones de resistencia al inhibidor de la integrasa en ningún caso²⁸⁸.

Pautas con EFV frente a pautas con NVP

El estudio 2NN fue un ensayo clínico aleatorizado y abierto, en el que se comparó la eficacia y tolerancia de EFV, NVP 400 mg QD, NVP 200 mg BID y EFV+NVP, combinados todos con d4T/3TC²⁸⁹. Se incluyeron 1.216 pacientes con una mediana de linfocitos CD4⁺ de 190 células/µL y de CVP de 4,7 log₁₀ copias/mL. Se consideró fracaso de tratamiento el fracaso virológico (descenso de CVP <1 log₁₀ en la semana 12 o dos determinaciones de CVP >50 copias/mL a partir de la semana 24 o una CVP ≥50 copias/mL en la semana 48), la progresión clínica a estadio C de los CDC o muerte y el cambio de tratamiento. En la semana 48, la proporción de pacientes con fracaso de tratamiento fue 43,6% en el grupo de NVP QD; 43,7% en el de NVP BID; 37,8% en el de EFV; y 53,1% en el de NVP+EFV. La diferencia de 5,9% (IC 95%: -0,9 a 12,8) entre las ramas con NVP BID y EFV no fue significativa y no pudo demostrarse la equivalencia dentro de los límites del 10%. No hubo diferencias entre los grupos con NVP (QD o BID). El fracaso de tratamiento fue más frecuente en la rama NVP+EFV que en la de EFV (15,3%, p=0,0003), pero no hubo diferencias significativas respecto al grupo de NVP QD (9,5%; p=0,05). Tampoco hubo diferencias entre las distintas ramas con respecto a la proporción de pacientes con CVP <50 copias/mL: 70% con NVP QD, 65% con NVP BID, 70% con EFV y 62,7% con EFV+NVP (ITT). En el subgrupo con CVP elevada (>100.000 copias/mL) el fracaso de tratamiento fue 19,9% en la rama de NVP QD, 15,8% en la de NVP BID, 8,2% en la de NVP+EFV y 5,9% en la de EFV (p=0,004). El incremento de linfocitos CD4⁺ fue similar en las 4 ramas. Los efectos adversos fueron más frecuentes en el grupo de NVP+EFV y la toxicidad hepatobiliar fue más frecuente en el de NVP QD que en los otros. Se registraron 25 muertes, de las que dos se atribuyeron a NVP. Como conclusión de este estudio se puede decir que la eficacia fue similar en los tres brazos que contenían un ITINN y que la eficacia de la combinación NVP + EFV es inferior a la que contiene solamente EFV.

A la hora de valorar los resultados de este estudio, debe tenerse en cuenta que en el diseño se especificó que sería clínicamente significativa una diferencia de fracaso terapéutico inferior al 10% entre las dos pautas (semana 48). Los resultados indicaron, sin embargo, que no podía descartarse una diferencia mayor ya que, según el intervalo de

confianza del 95%, la eficacia de EFV sobre NVP puede superar el 10%. En un análisis de sensibilidad en el que sólo se incluyeron los pacientes que tomaron la medicación la proporción de pacientes con éxito terapéutico fue significativamente mayor en el grupo de EFV que en el de NVP BID.

Resumen sobre ensayos de ITINN

Se ha demostrado que pautas con EFV o NVP son más eficaces que pautas con 3 ITIAN. Igualmente se ha demostrado que una pauta con EFV es más eficaz que las basadas en algunos IP (IDV, NFV, SQV/r, APV/r, LPV/r). ATV/r es no inferior a EFV. Sin embargo, no se ha demostrado en ningún ensayo clínico que NVP sea más eficaz que un IP, pero sí no inferior a ATV/r. Por último, la comparación entre los dos ITINN no ha permitido obtener conclusiones definitivas.

Consideraciones sobre la elección de un régimen con NVP o EFV

- 1) EFV ha demostrado su eficacia en pacientes con CVP >100.000 copias/mL o muy inmunodeprimidos (50-100 linfocitos CD4/ μ L) 290,291 .
- 2) EFV está disponible para su uso en coformulación junto a TDF/FTC en un único comprimido de administración una vez al día
- 3) EFV está contraindicado en el primer trimestre de la gestación (riesgo de teratogenicidad) y debería evitarse en mujeres que quieran quedarse embarazadas o que no utilicen métodos anticonceptivos seguros. EFV puede producir mareos, trastornos de la concentración y somnolencia, por lo que se deberá informar a los pacientes y recomendarles que, en presencia de estos síntomas, eviten tareas peligrosas como conducir o usar máquinas pesadas. Asimismo debería evitarse en pacientes con antecedentes psiquiátricos graves. EFV es inductor del metabolismo de metadona y puede producir síndrome de abstinencia.
- 4) NVP ha demostrado no inferioridad con respecto a ATV/r, incluso con pacientes con CVP superior a 100.000 copias/mL y ha demostrado una eficacia similar a EFV (ambos combinados con 3TC/d4T) en el estudio 2NN
- 5) NVP puede producir exantema cutáneo, con o sin fiebre y síntomas pseudogripales. Se han descrito eventos hepáticos graves e incluso fatales durante las primeras semanas de tratamiento, por lo que NVP debe administrarse con precaución en pacientes con hepatopatía crónica y transaminasas elevadas (contraindicada si las transaminasas están por encima de cinco veces el límite superior de la normalidad). Los eventos hepáticos son más frecuentes en el TAR de inicio en mujeres con un recuento de linfocitos CD4⁺ superior a 250 células/µL (11% frente a 0,9%) o en varones con más de 400 linfocitos CD4⁺/µL (6,3% frente a 1,2%). NVP también induce el metabolismo de metadona y puede producir síndrome de abstinencia.
- 6) Existe muy escasa experiencia en cuanto a eficacia y tolerabilidad de la combinación ABC/3TC+NVP. Además, tanto ABC como NVP pueden presentar reacción de hipersensibilidad.

El estudio ECHO es un ensayo clínico de fase III, doble ciego, que incluyó a pacientes adultos sin TAR previo y sin mutaciones de resistencia en el estudio genotípico basal. Los participantes fueron aleatorizados en proporción 1:1 (estratificando según CV) a recibir RPV: 25 mg QD, con comida (n=346) o EFV: 600 mg QD (N=344) en ayunas y por la noche. Como pareja de análogos se administró TDF/FTC coformulado. El estudio se diseñó para demostrar la no-inferioridad de RPV frente a EFV, tomando como variable primaria de eficacia la respuesta confirmada definida como CVP <50 copias/mL en la semana 48 mediante un análisis por ITT según el algoritmo TLOVR. El margen inferior del intervalo de confianza de la diferencia fue de -12%²⁹². El estudio THRIVE, de diseño similar al ECHO, se diferencia únicamente de éste en que los investigadores podían seleccionar tres diferentes parejas de ITIAN. En este estudio se incluyeron 340 pacientes en el brazo de RPV (204 TDF/FTC, 101 AZT/3TC y 35 ABC/3TC) y otros 340 pacientes en el brazo de EFV (202 TDF/FTC, 103 AZT/3TC y 33 ABC/3TC); se permitieron los cambios entre parejas de ITIAN solo por razones de intolerancia y siempre guiados por estudios de resistencia genotípicos²⁹³. En el estudio ECHO lograron una respuesta confirmada 287 (83%) pacientes del brazo de RPV y 285 (83%) del brazo de EFV²⁹²; en el subgrupo de pacientes con CVP basal menor de 100.000 copias/mL los porcentajes de respuesta fueron 90% en el brazo de RPV y 83% en el de EFV; en el subgrupo de CVP basal comprendida entre 100.000 y 500.000 copias/mL: 79% con RPV y 83% con EFV y en el de CVP basal mayor de 500.000 copias: 62% con RPV y 81% con EFV. En el estudio THRIVE lograron una respuesta confirmada 291 (86%) de los pacientes tratados con RPV y 276 (82%) de los tratados con EFV²⁹³, confirmándose en ambos estudios la noinferioridad de RPV frente a EFV. En el subgrupo de pacientes con CVP basal menor de 100.000 copias/mL los porcentajes de respuesta fueron 91% en el brazo de RPV y 84% en el de EFV; en el subgrupo de CVP basal comprendida entre 100.000 y 500.000 copias/mL: 80% con RPV y 82% con EFV y en el de CVP basal mayor de 500.000 copias: 77% con RPV y 69% con EFV. No hubo diferencias significativas en el incremento de la cifra de linfocitos CD4⁺ entre RPV y EFV en ninguno de ambos estudios.

En el estudio ECHO, la interrupción del tratamiento por efectos adversos fue del 2% para los tratados con RPV y del 8% para los tratados con EFV²⁹². En el estudio THRIVE, la interrupción del tratamiento por efectos adversos fue del 4% para los tratados con RPV y del 7% para los tratados con EFV²⁹³. En ambos estudios, se documentó una frecuencia significativamente menor de efectos adversos de grado 2-4 con RPV que con EFV, incluyendo entre ellos exantema, mareos y alteraciones del sueño o pesadillas. Los incrementos en la cifra de triglicéridos, colesterol total, colesterol LDL y colesterol HDL fueron menores en los tratados con RPV que en los tratados con EFV; sin embargo, no se observaron diferencias en los cambios del cociente colesterol total/colesterol HDL entre ambos brazos de tratamiento. Hubo un incremento pequeño, pero significativo, de la creatinina sérica en el brazo de RPV lo que probablemente se debe a cambios en la secreción tubular de creatinina y no a un efecto directo sobre el filtrado glomerular. Por otra parte, se observó una mayor frecuencia de respuesta anormal de cortisol a la hormona adrenocorticotropa en los tratados con RPV en comparación con los tratados con EFV, que no se consideró clínicamente relevante.

En el estudio ECHO, la frecuencia de fracaso virológico (definido como la ausencia de CV <50 copias/mL antes de la semana 48 o el rebrote de la viremia al menos en dos ocasiones consecutivas tras haber logrado una CVP <50 copias/mL) fue 11% para los tratados con RPV y 4% para los tratados con EFV en el análisis ITT-TLOVR²⁹². En el estu-

dio THRIVE, la frecuencia de fracaso virológico fue del 7% para los tratados con RPV y del 5% para los tratados con EFV²⁹³. El análisis conjunto de los datos de los estudios ECHO y THRIVE (planificado de antemano por los investigadores) confirmó los datos de eficacia y seguridad de los dos estudios individuales. Los porcentajes de respuesta confirmada en los pacientes con CVP basal inferior a 100.000 copias/mL fueron: 90% en el brazo de RPV y 84% en el de EFV (diferencia: 6,6; IC 95%: 1,6 a 11,5); en los pacientes con CVP basal entre 100.000 y 500.000 copias/mL: 80% con RPV y 83% con EFV (diferencia: -3,1; IC 95%: -9,8 a 3,7) y en los que tenían una CVP superior a 500.000 copias/mL: 70% con RPV y 76% con EFV (diferencia: -6,0; IC 95%: -20,4 a 8,3). También mostró que la frecuencia de fracaso virológico era mayor en los tratados con RPV que en los tratados con EFV, principalmente en aquellos pacientes con CVP alta (>100.000 copias/mL) o cumplimiento subóptimo del TAR²⁹⁴. Así, se documentó fracaso virológico en 72/686 (9%) de los pacientes tratados con RPV y en 39/682 (5%) de los tratados con EFV. En los pacientes con CV basal ≤100.000 copias/mL la proporción de pacientes con fracaso virológico fue similar en los tratados con RPV (19/368; 4%) que en los tratados con EFV (16/330; 3%). Sin embargo, en pacientes con CV >100.000 copias/mL hubo más fracasos virológicos en los tratados con RPV (53/318; 17%) que en los tratados con EFV (23/352; 7%)²⁹⁴. El análisis conjunto de los estudios de resistencia de los dos ensayos clínicos reveló que tras el fracaso virológico ocurrió la emergencia de mutaciones de resistencia a ITIAN (especialmente M184I y M184V) con más frecuencia en los tratados con RPV (42/62;68%) que en los tratados con EFV (9/28;32%)²⁹⁵. La emergencia de mutaciones de resistencia a ITINN tras el fracaso resultó similar en los tratados con RPV (39/62; 63%) que en los tratados con EFV (15/28; 54%). Tras el fracaso con EFV la mutación más frecuente fue la K103N, mientras que tras el fracaso con RPV las mutaciones más frecuentes fueron la E138K (que confiere resistencia a ETR) y la K101E, que afecta a todos los ITINN²⁹⁵.

En el ensayo clínico STaR se compararon dos pautas de TAR basadas en regímenes de pastilla única en pacientes infectados por el VIH sin TAR previo: RPV/TDF/FTC (N=394) frente a EFV/TDF/FTC (N=392). La aleatorización se estratificó por un valor de CVP basal mayor o menor de 100.000 copias/mL. La variable primaria de eficacia fue la proporción de pacientes con CVP inferior a 50 copias/mL en la semana 48 según el algoritmo "snapshot" de la FDA, con un margen inferior de no-inferioridad del 12%. La proporción de pacientes que lograron la variable primaria de eficacia fue la siguiente: a) en la totalidad de los pacientes: 86% con RPV y 82% con EFV; diferencia: 4,1% (IC 95%: -1,1 a 9,2); b) grupo de pacientes con CVP ≤100.000 copias/mL: 89% con RPV y 82% con EFV; diferencia: 7,2% (IC 95% CI: 1,1 a 13,4); c) grupo de pacientes con CVP superior a 100.000 copias/mL: 80% con RPV y 82% con EFV; diferencia: -1,8% (IC 95%: -11,1 a 7,5). Por tanto, se demostró la no-inferioridad de RPV/TDF/FTC frente a EFV/TDF/FTC en la población total y en los pacientes con CVP superior a 100.000 copias/mL y la superioridad de RPV/TDF/FTC frente a EFV/TDF/FTC en los pacientes con CV ≤100.000 copias/mL. En un análisis no contemplado en el diseño inicial se observó que la respuesta en pacientes con CVP comprendida entre 100.000 y 500.000 copias/mL fue de 83% con RPV y 82% con EFV, mientras que en aquellos con CVP superior a 500.000 copias/mL fue 72% con RPV y 80% con EFV. Se documentaron los siguientes fracasos virológicos: a) en la totalidad de los pacientes: 8% con RPV y 6% con EFV; b) grupo depacientes con CVP ≤ 100.000 copias/mL: 5% con RPV y 3% con EFV; c) grupo de pacientes con CVP entre 100.000 y 500.000 copias/mL: 10% con RPV y 9% con EFV; d) pacientes con CVP superior a 500.000 copias/mL: 25% con RPV y 16% con EFV. Se detectaron mutaciones de resistencia a FAR en el 4% de los pacientes tratados con RPV y en el 1% de los tratados con EFV. Se detectaron mutaciones de resistencia a ITINN en el 4% de los pacientes tratados con RPV y en el 1% de los tratados con EFV. Se detectaron mutaciones a ITIAN en el 4% de los pacientes tratados con RPV y en el 0,3% de los tratados con EFV. Los pacientes tratados con RPV en relación a los tratados con EFV tuvieron una menor frecuencia de retirada del tratamiento por efectos adversos (2,5% y 8,7%, respectivamente (P < 0,001), una menor incidencia de efectos adversos del SNC (30% y 51%, respectivamente (P < 0,001) y una menor frecuencia de efectos adversos psiguiátricos 16% y 38% (P < 0,001)

Recomendaciones sobre ITINN

- En general se recomienda EFV frente a NVP, por los resultados de los diferentes estudios (C-III)
- EFV está contraindicado durante el primer trimestre de la gestación. Se recomienda considerar otras opciones en mujeres que no utilicen métodos anticonceptivos eficaces. Asimismo, se debe evitar en pacientes que realicen tareas peligrosas si presentan síntomas de somnolencia, mareos y/o trastornos de la concentración (B-III)
- Está contraindicado el uso de NVP en mujeres con cifras de linfocitos CD4⁺ superiores a 250 células/μL y en varones con cifras de linfocitos CD4⁺ superiores a 400 células/μL (A-II)
- En pacientes con CV mayor de 100.000 copias/mL el riesgo de fracaso virológico es mayor en los pacientes tratados con RPV que en los tratados con EFV (A-I)

4.5. Inhibidores de la proteasa

En España se han comercializado nueve IP: saquinavir (SQV), indinavir (IDV), ritonavir (RTV), nelfinavir (NFV), amprenavir (APV) que se ha sustituido por su profármaco fosamprenavir (FPV), lopinavir (LPV), atazanavir (ATV), tipranavir (TPV) y darunavir (DRV). TPV/r está aprobado por la EMA solamente en pacientes pretratados. Las principales características de los IP se muestran en la Tabla 7. Los IP son inductores e inhibidores del citocromo P450 y frecuentemente pueden originar interacciones farmacológicas. La elección final del IP se basará en datos de eficacia, tolerabilidad, farmacológicas, posología y farmacocinética. Las características farmacodinámicas de los IP se potencian si se administran con una dosis mínima de RTV. LPV se administra en comprimidos coformulados con el RTV.

Combinaciones de TAR que incluyan IP potenciados

Se entiende por IP potenciado la coadministración de un IP con dosis reducidas de RTV (IP/r). RTV tiene un potente efecto inhibidor del citocromo P450, que inhibe el meta-

bolismo del segundo IP, mejorando su perfil farmacocinético y el cociente C_{min}/CI_{50} y reduciendo el riesgo de aparición de resistencias. Además al potenciar un IP se reduce el número de comprimidos, la frecuencia de dosis y las restricciones dietéticas, todo lo cual favorece la adherencia. En la Tabla 7 están las combinaciones más importantes de IP y sus dosificaciones basadas en estudios farmacocinéticos.

Estudios que han comparado distintos IP

M98-863

El M98-863 es un ensayo clínico aleatorizado, doble ciego, multicéntrico, que comparó LPV/r (400/100 mg BID; n=326) frente a NFV (750 mg TID; n=327) junto a d4T/3TC. En la semana 60, se observó mejor respuesta virológica (ITT) en los pacientes tratados con LPV/r (CVP <50 copias/mL, 64% y 52%, respectivamente, P =0,001)²⁹⁷.

Abbott 418

En el ensayo clínico Abbott 418 se evaluó la eficacia y tolerancia de LPV/r BID frente a LPV/r QD combinados con TDF/FTC. Se incluyeron 190 pacientes con una mediana de CD4 de 214-232 células/ μ L y de CVP de 4,6-4,8 log₁₀ en cada grupo. A la semana 48 la proporción de pacientes con CVP <50 copias/mL fue similar (70% y 64% según pauta, LPV/r QD o LPV/r BID, análisis ITT)²⁹⁸.

KLEAN

El estudio KLEAN comparó FPV/r (700/100 mg BID) con LPV/r (300/100 mg BID en cápsulas), ambos con ABC/3TC coformulados, en 887 pacientes. En la semana 48 la proporción de pacientes con CVP <50 copias/mL (ITT) fue 66% en el grupo de FPV/r y 65% en el de LPV/r, demostrando la no inferioridad de FPV/r frente a las cápsulas de LPV/r. No hubo diferencia significativa en cuanto a tolerancia digestiva (náuseas, vómitos, diarrea) ni alteraciones lipídicas²⁶⁶.

APV30001 - NEAT

En el estudio NEAT se evaluó la eficacia y tolerancia de FPV (1400 mg BID) frente a NFV, ambos en combinación con ABC/3TC. Se aleatorizaron 166 pacientes a FPV y 83 a NFV. A las 48 semanas, la proporción de pacientes con CVP <400 copias/mL fue mayor en el grupo de FPV que en el de NFV (66% y 51%; ITT). En el grupo de CVP elevada (>100.000 copias/mL) la proporción fue de 67% y 35% respectivamente (P <0,05) 291 .

APV30002 - SOLO

El SOLO es un ensayo clínico aleatorizado en el que compararon 322 pacientes tratados con FPV/r QD (1400/200 mg) con 327 pacientes con NFV, ambos asociados a ABC+3TC. La mediana de CD4 fue 170 células/ μ L y la CVP 4,8 log_{10.} El 20% de los pacientes tenían <50 CD4/ μ L. A las 48 semanas no hubo diferencias (ITT) en la proporción de pacientes con CVP <400 copias/mL (69%, FPV/r frente 68%, NFV) ni con CVP <50 copias/mL (55 frente a 53%). Sin embargo, la proporción de pacientes que presentaron fallo virológico fue superior en la rama de NFV (17%) que en la de FPV/r (7%)³⁰⁰.

COL100758

El estudio COL100758 comparó FPV/r (1400/100 mg) y FPV/r (1400/200 mg) ambos QD junto con ABC/3TC coformulados. Se incluyeron 115 pacientes. A las 48 semanas la proporción de pacientes con CVP <50 copias/mL (ITT) fue 79% (FPV/r 100 mg) y 63%

(FPV/r 200 mg); p=0,061. La adherencia fue mejor en el grupo de 100 mg de RTV 301 . En voluntarios sanos se ha demostrado que los niveles plasmáticos de FPV (1400 mg QD) no difieren si se potencia con 100 o 200 mg de RTV 302 .

ARTEMIS

El estudio ARTEMIS comparó DRV/r (800/100 mg, QD) frente a LPV/r (BID y QD) en 689 pacientes que recibieron además TDF/FTC coformulados. La dosificación de LPV/r fue variable: 77% recibieron el LPV/r BID, 15% QD y, además, el 7% cambió de BID a QD durante el estudio. El 15% recibió LPV/r en cápsulas, el 2% en comprimidos y el 83% cambiaron de cápsulas a comprimidos durante el estudio. A las 48 semanas la proporción con CVP <50 copias/mL (ITT) fue 84% en el grupo de DRV/r y 78% en el de LPV/r (IC 95%; -0,3 a 11,2; p=0,062), demostrando la no inferioridad de DRV/r frente a LPV/r, Los pacientes tratados con DRV/r presentaron menos diarrea de grado 2-4 que los tratados con LPV/r (4% frente 10%) y las elevaciones lipídicas fueron menores (triglicéridos y colesterol total)³⁰³. A las 96 semanas, un 79% de los pacientes en la rama de DRV/r y un 71% en la LPV/r tenían CVP <50 copias/mL, confirmando no sólo la noinferioridad (diferencia estimada: 8,4%; IC 95%: 1,9-14,8; p <0,001), sino también la superioridad de DRV/r sobre LPV/r (ITT; p= 0,012). Un 4% de los pacientes de la rama de DRV/r y un 9% de los la rama de LPV/r abandonaron el tratamiento asignado³⁰⁴. A las 192 semanas, el 68,8% de los pacientes con DRV/r y el 57,2% de los tratados con LPV/r mostraron una CVP <50 copias/mL, corroborando la no-inferioridad y superioridad del DRV/r. Se confirma así el buen perfil de tolerabilidad del DRV tras 4 años de tratamiento³⁰⁵.

GEMINI

El estudio GEMINI comparó SQV/r (1000/100 mg, BID) frente a LPV/r (300/100 mg BID en cápsulas) en 337 pacientes, todos los cuales recibieron, además, una combinación coformulada de TDF/FTC. A las 48 semanas la proporción con CVP <50 copias/mL mediante un análisis por ITT fue de 64,7% en el grupo de SQV/r y de 63,5% en el grupo de LPV/r (IC 95%: -9,6 a -11,9). El estudio demostró no inferioridad de SQV/r frente a LPV/r. Las elevaciones lipídicas fueron similares con un incremento mayor de triglicéridos en el grupo de LPV/r y de colesterol-LDL en el de SQV/r³⁰⁶.

BMS-089

El estudio BMS 089 comparó ATV (400 mg QD) frente a ATV/r (300/100 mg, QD). Se incluyeron 200 pacientes que recibieron además d4T de liberación retardada (100 mg QD) y 3TC (300 mg QD). A las 48 semanas, la proporción de pacientes con CVP <50 copias/mL (ITT) fue 75% en el grupo de ATV/r y 70% en el de ATV. En este estudio se demostró la no-inferioridad de ATV/r frente a ATV sin potenciar. Las causas de fracaso terapéutico fueron diferentes en ambos brazos. Hubo más fracasos virológicos en la rama de ATV no potenciado (10% frente a 3%), pero tal diferencia no alcanzó la significación estadística. Los pacientes de la rama de ATV/r que experimentaron fracaso virológicos no tenían mutaciones en el gen de la proteasa, mientras que éstas se detectaron en 3 de los 10 pacientes que fracasaron con ATV sin potenciar. También hubo más mutaciones de resistencia a 3TC en el grupo no potenciado (7 de 10 frente a 1 de 3). Las suspensiones de tratamiento por hiperbilirrubinemia fueron más frecuentes con ATV/r que con ATV. El estudio puso de manifiesto la mayor eficacia virológica y barrera genética de ATV/r³⁰⁷.

Estudio 1182.33

El estudio 1182.33 intentó comparar dos dosis de TPV/r (500/100 mg BID y 500/200 mg BID) frente a LPV/r (400/100 mg BID). El comité de vigilancia decidió parar el estudio por una mayor tasa de elevación asintomática de enzimas hepáticas en la rama de TPV/r 500/200 mg BID y por no alcanzar el criterio de no-inferioridad a la semana 60 en la rama de TPV/r 500/100 mg BID. Debido a estos resultados no se recomienda el uso de TPV/r en terapias de inicio (Número de identificación en ClinicalTrials.gov NCT00144105)

Estudio 730

La combinación TDF/FTC+LPV/r (comprimidos, BID) se ha comparado con la combinación TDF/FTC+LPV/r (comprimidos, QD) en 664 pacientes que recibían el primer tratamiento. La proporción de pacientes con cargas virales <50 copias/mL (ITT) fue del 77% en el grupo QD y del 76% en el grupo BID. Este ensayo clínico demuestra, pues, la noinferioridad de LPV/r administrado una vez al día frente a LPV/r administrado dos veces al día. Durante las primeras 8 semanas del estudio los pacientes en cada grupo fueron aleatorizados además a recibir las cápsulas o los comprimidos de LPV/r, sin que se encontrasen diferencias entre ambas presentaciones respecto a la incidencia de efectos adversos o a las discontinuaciones por toxicidad²⁹⁸.

Estudio CASTLE

Este ensayo comparó la combinación TDF/FTC+ATV/r QD con la combinación TDF/FTC+LPV/r (cápsulas) BID en 883 pacientes sin TAR previo, habiendo demostrado la no-inferioridad de ATV/r frente a LPV/r en su presentación de cápsulas. La proporción de pacientes con cargas virales <50 copias/mL (ITT) fue de 78% en el grupo de ATV/r y de 76% en el grupo de LPV/r. ATV/r mostró mejor perfil lipídico (colesterol total, triglicéridos y colesterol no-HDL). La ictericia e hiperbilirrubinemia fueron más frecuentes en el grupo de ATV/r mientras que la diarrea y las náuseas lo fueron en el grupo de LPV/r³⁰⁸. A las 96 semanas, el 74% frente a 68% de los pacientes en las ramas de ATV/r y de LPV/r, respectivamente, tenían una CVP <50 copias/mL (ITT, p <0,05), con lo que se confirmó la no inferioridad de ATV/r con respecto a LPV/r. Los abandonos en ambas ramas fueron del 7% ³⁰⁹.

Estudio GS-US-236-0103

La combinación de ATV/r+FTC/TDF como TAR de inicio también ha sido evaluada en el estudio 103, un ensayo clínico aleatorizado a doble ciego, que comparó EVG/COBI/FTC/TDF (coformulados en pastilla única) y ATV/r+FTC/TDF. La variable primaria de evaluación fue la proporción de pacientes con CV <50 copias/mL en la semana 48 mediante un análisis por ITT, según el algoritmo *Snapshot* de la FDA. Se trataron 708 pacientes y lograron el objetivo primario 316/353 (89,5%) de los tratados con EVG/COBI/FTC/TDF y 308/355 (86,8%) de los tratados con ATV/r+FTC/TDF (diferencia: 3,0%; IC 95%: -1,9% a 7,8%), confirmándose, pues, la no-inferioridad de EVG/COBI/FTC/TDF frente a ATV/r+FTC/TDF. En 5 de los 12 pacientes del grupo de EVG/COBI/FTC/TDF en los que se efectuó una prueba genotípica de resistencia se objetivaron mutaciones, las cuales conferían resistencia a los inhibidores de la integrasa en 4 de ellos (Q148R en 2, N155H en 2, T66I en 1 y E92Q en 1). Ninguno de los 8 pacientes del grupo de ATV/RTV+FTC/TDF en los que se investigó la existencia de resistencia habían desarrollado mutaciones. Ambos regímenes se toleraron bien y las interrupciones

del tratamiento por efectos adversos fueron bajas en ambos brazos. El tratamiento con EVG/COBI/FTC/TDF indujo menos elevaciones de los triglicéridos hasta la semana 4 que el tratamiento con ATV/r+FTC/TDF (mediana de 0,09 mmol/L y 0,26 mmol/L respectivamente, *P*=0,006). En ambos brazos se documentaron pequeños incrementos en la concentración de creatinina sérica con los consiguientes descensos en el filtrado glomerular estimado³¹⁰.

Estudio GS-US-216-0114

El estudio 0114 es un ensayo clínico de fase III, aleatorizado, doble ciego, de noinferioridad, en el que se comparó COBI frente a RTV como potenciador de ATV en 692 pacientes sin TAR previo y con un filtrado glomerular estimado (FGe) ≥70 mL/min. Todos los pacientes recibieron FTC/TDF como pareja de ITIAN. La aleatorización se estratificó según que la CVP basal fuese mayor o igual/menor de 100.000 copias/mL. La variable primaria de eficacia fue la proporción de pacientes con CVP inferior a 50 copias/mL en la semana 48, según el algoritmo "snapshot" de la FDA, con un margen inferior de no-inferioridad del 12%. Se aleatorizaron 344 pacientes al brazo de COBI y 348 pacientes al brazo de RTV. Lograron el objetivo de eficacia el 85% de los tratados con COBI y el 87,2% de los tratados con RTV (diferencia: -2,2; IC 95%: -7,4 a 3,0), demostrándose, por tanto, la no-inferioridad de COBI frente a RTV. El incremento en la cifra de linfocitos CD4⁺ fue 213 células/μL con COBI y 219 células/μL con RTV. En 24 pacientes con fracaso virológico en los que se pudo hacer genotipificación del virus, no se detectaron mutaciones primarias para IP ni para TDF; se detectó la mutación M184V/I en 2 pacientes tratados con COBI y en ninguno de los tratados con RTV. Los pacientes con COBI presentaron más hiperbilirrubinemia (65% frente a 57%), mayor descenso del filtrado glomerular estimado (-13 frente a -9 mL/min) y una tendencia sin significación estadística a presentar cifras menores de colesterol y triglicéridos³¹¹.

Resumen sobre ensayos de IP en pacientes sin terapia previa

Los estudios han demostrado que la administración de un IP potenciado con RTV (LPV/r, SQV/r, FPV/r, ATV/r, DRV/r) tiene ventajas de eficacia y barrera genética respecto a los IP no potenciados y el principal inconveniente de la potenciación es el aumento de efectos adversos.

Recomendaciones sobre IP

- Como IP de primera elección se recomiendan ATV/r QD, DRV/r QD y LPV/r BID o QD (A-I)
- FPV/r o SQV/r se pueden utilizar como pautas alternativas (B-III)

4.6. Inhibidores del correceptor CCR5

Los inhibidores del correceptor CCR5 actúan bloqueando la entrada de VIH-1 en la célula diana. Estos fármacos son activos solamente si el virus tiene tropismo R5. MVC es el único inhibidor del correceptor CCR5 que ha sido aprobado para tratamientos en pacientes pretratados con tropismo R5 (Tabla 8).

Ensayo que avala la recomendación de inhibidores de CCR5

MERIT

El estudio MERIT es un ensayo que comparó MVC (300 mg, BID), con MVC (600 mg, QD) y con EFV (600 mg, QD) en pacientes infectados por VIH-1 R5-trópico y sin TAR previo. Los pacientes recibieron además AZT/3TC. El grupo de MVC QD fue interrumpido a la semana 16 por no alcanzar el criterio virológico definido en el protocolo. A las 48 semanas, la proporción de pacientes con CVP <50 copias/mL (ITT) fue 65,3% y 69,3% en el grupo de MVC y de EFV (límite inferior del IC 97,5%: -10,9%). La proporción con CVP <400 copias/mL (análisis por ITT) fue 70,6 % y 73,1% en el grupo de MVC y de EFV (límite inferior del IC 97,5%: -9,5%). El límite inferior del IC al 97,5%, de no inferioridad, que se estableció para este ensayo clínico fue de -10%. Por lo tanto el estudio demostró la no-inferioridad de MVC para el criterio de 400 copias/mL, pero no para el de 50 copias/mL. La discontinuación del TAR por falta de eficacia fue más frecuente con MVC (11,9%) que con EFV (4,2%), pero por efectos adversos fue mayor con EFV (13,6%) que con MVC (4,2%). La recuperación inmunológica fue mayor con MVC (170 frente 144 linfocitos CD4⁺/µL, respectivamente)^{312,313}. En un reanálisis post-hoc en el que se excluyeron 107 pacientes (15%) con virus X4 o D/M, gracias a un ensayo de tropismo más sensible, el límite inferior de no inferioridad al 97,5% para la diferencia entre tratamientos se situó por encima de -10% para cada objetivo, consiguiendo, pues, la no-inferioridad de MVC frente a EFV³¹³.

Recomendaciones

 MVC sólo debe emplearse como TAR de inicio en pacientes con virus con tropismo R5, cuando no sea posible un tratamiento con ITINN, un IP o un InInt (C-I), la recomendación se basa en resultados del estudio MERIT

4.7. Inhibidores de la integrasa

Los inhibidores de la integrasa (InInt) actúan alterando la integrasa viral que no pueden unir los extremos reactivos del ADN viral al ADN celular (Tabla 8).

Ensayos que avala la recomendación de inhibidores de la integrasa

El estudio STARTMRK es un ensayo clínico, aleatorizado, doble ciego, multicéntrico e internacional, que compara EFV con RAL, ambos combinados con TDF/FTC en 566 pacientes sin TAR previo³¹⁴. El objetivo primario de eficacia fue la consecución de una CVP <50 copias/mL a la semana 48. El margen de no inferioridad fue del 12%. El 53% de los pacientes tenían carga viral basal >100.000 copias/mL y un 47% un cifra de linfocitos CD4⁺ inferior a 200 células/μL. El objetivo primario del estudio se consiguió en un 86,1% de los pacientes del grupo de RAL y en el 81,9% del grupo de EFV (diferencia: 4,2%; IC 95%: -1,9 a 10,3). El grupo de RAL tardó menos tiempo en alcanzar la indetectabilidad que el grupo de EFV (p <0,0001). Los efectos adversos relacionados con los

fármacos fueron más frecuentes en el grupo de EFV que en el de RAL (p <0,0001). La comunicación de los resultados, aún ciegos, a 240 semanas del estudio STARTMRK confirman la eficacia virológica e inmunológica tanto de RAL o EFV combinados con TDF/FTC. Es de destacar que después de 5 años de seguimiento, la tasa de supresión virológica fue superior con RAL que con EFV (71% vs 61%). La recuperación imunológica también fué superior con RAL (+374 frente a +312 linfocitos CD4⁺)³¹⁴.

En el estudio QDMRK se comparó RAL 800 mg QD frente a RAL 400 mg BID, ambos en combinación con TDF/FTC, en 775 pacientes sin TAR previo, con el objetivo de investigar la no-inferioridad de la pauta QD frente a la BID con un margen de no inferioridad definido de antemano del -10%. En el análisis primario de eficacia a las 48 semanas la proporción de pacientes con CVP <50 copias/mL en los brazos QD y BID fue 83,2% y 88,9%, respectivamente (diferencia: -5,7; IC 95%: -10,7 a 0,83). La respuesta virológica fue menor con RAL QD que con RAL BID, con indepencia de la CVP basal. Se documentaron mutaciones de resistencia a RAL tras el fracaso virológico en 9/27 (33%) y 2/12 (17%) pacientes evaluables de las pautas QD y BID, respectivamente. La concentración media de RAL en el valle resultó inferior en el grupo QD (83 nM) que en el grupo BID (380 nM). El fracaso virológico fue más frecuente en los pacientes que recibían RAL QD y que tenían concentraciones bajas de RAL. No hubo diferencias en seguridad entre ambos brazos de tratamiento. Los resultados de este estudio muestran que la eficacia virológica de RAL 800 mg QD es inferior a RAL 400 mg BID cuando se administra con TDF/FTC³¹⁵.

El ensayo clínico SPRING-2 es un estudio de fase III, aleatorizado y doble ciego, que comparó la no inferioridad de DTG, 50 mg QD, frente a RAL, 400 mg BID, en 822 pacientes infectados por el VIH sin TAR previo (411 por brazo). Los investigadores pudieron elegir entre TDF/FTC o ABC/3TC como pareja de ITIAN. La variable primaria de eficacia fue la proporción de pacientes con CVP inferior a 50 copias/mL en la semana 48, según el algoritmo "snapshot" de la FDA, con un margen inferior de no-inferioridad del 10%. Se utilizó TDF/FTC en el 59% de los pacientes del brazo de DTG y en el 60% de los del brazo de RAL y se eligió ABC/3TC en el 41% de los pacientes del brazo de DTG y en el 40% de los del brazo de RAL. La proporción de pacientes que lograron el objetivo primario de eficacia fue del 88% con DTG y del 85% con RAL (diferencia entre ambos brazos: 2,5% [IC 95%: -2,2 a 7,1], demostrándose, pues, la no inferioridad de DTG frente a RAL. El incremento en la cifra de linfocitos CD4⁺ fue de 230 células/μL en ambos brazos. Se documentó fallo virológico en 20 (5%) de pacientes tratados con DTG y en 28 (7%) de los tratados con RAL. No se detectaron mutaciones de resistencias a DTG ni a ITIAN en los tratados con DTG y se detectaron mutaciones de resistencia a inhibidores de la integrasa y a ITIAN en 1 y 4 pacientes tratados con RAL, respectivamente. No hubo diferencias en lo relativo a efectos adversos o alteraciones en las pruebas de laboratorio de grado 3 o 4 entre ambos brazos. Se detectó un pequeño incremento en la cifra de creatinina en el brazo de DTG por bloqueo de la secreción renal del fármaco, sin que se afectara el filtrado glomerular real. Las retiradas del tratamiento por efectos adversos fueron poco frecuentes y no hubo diferencias entre ambos brazos³¹⁶.

Recomendaciones

 RAL puede emplearse como tratamiento de inicio en dosificación BID combinado con TDF/FTC o ABC/3TC (A-I)

4.8. Pautas libres de análogos de nucleósidos

La idea de utilizar pautas de TAR libres de ITIAN surgió en un momento en que los fármacos de esta familia tenían una toxicidad significativa, como, por ejemplo: lipoatrofia (d4T, ddl, AZT), neuropatía periférica (d4T y ddl), pancreatitis aguda (ddl y d4T) y mielosupresión (AZT). Además, las pautas libres de ITIAN resultaban atractivas porque llevaban asociada una reducción en el número de pastillas que, al menos teóricamente, podían mejorar el cumplimiento terapéutico y la calidad de vida. La necesidad de pautas libres de ITIAN es hoy en día menos acuciante puesto que las pautas de ITIAN actualmente recomendadas (FTC/TDF y 3TC/ABC) presentan ventajas indudables con respecto a otras que actualmente se consideran alternativas. Tanto FTC/TDF como 3TC/ABC resultan muy eficaces, pueden administrarse coformuladas en regímenes QD y apenas tienen toxicidad aguda (en ausencia del HLA-B*5701). La toxicidad a medio y largo plazo de FTC/TDF como 3TC/ABC también es menor que otras combinaciones de ITIAN consideradas actualmente como alternativas, aunque conviene mencionar la toxicidad renal (poco frecuente) y ósea (de significado clínico todavía incierto) de TDF y la asociación entre el uso de ABC y el infarto agudo de miocardio, cada vez más puesta en duda.

Monoterapia con IP

En el estudio MONARK se comparó la eficacia y seguridad de LPV/r en monoterapia frente a LPV/r+AZT/3TC como TAR de inicio en pacientes con CVP basal <100.000 copias/mL. En la semana 48, por ITT, lograron CVP <50 copias/mL 53 de 83 pacientes (64%) en el brazo de monoterapia y 40 de 53 (75%) en el brazo de triple terapia (p= 0,19). En un análisis OT, la proporción de pacientes con CVP <50 copias/mL en la semana 48 fue 80 y 95% para los pacientes con monoterapia y triple terapia, respectivamente (p= 0.02)³¹⁷.

Combinaciones de IP/r con ITINN

En el estudio ACTG 5142 se compararon tres pautas como TAR de inicio: EFV+2 ITIAN, LPV/r+2 ITIAN y una pauta libre de ITIAN (EFV+LPV/r). Se aleatorizaron en total 757 pacientes con una mediana de linfocitos CD4⁺ de 191 células/μL y una mediana de CVP de 4,8 log₁₀ copias/mL. El tiempo hasta el fracaso virológico resultó más largo para la pauta de EFV+2 ITIAN que para LPV/r+2 ITIAN (p=0,006) pero no fue diferente para EFV+LPV/r en comparación con las otras dos pautas con ITIAN. En la semana 96, la proporción de pacientes con CVP <50 copias/mL fue 89% en el grupo de EFV, 77% en el grupo de LVP/r y 83% en el grupo de EFV+LPV/r (*p*=0,003 para la comparación entre EFV y LPV/r). No se observaron diferencias en el tiempo hasta la discontinuación del tratamiento por efectos tóxicos. En los pacientes con fracaso virológico, la emergencia de cepas con mutaciones de resistencia resultó más frecuente en el brazo libre de ITIAN que en los brazos con ITIAN. De este estudio se puede concluir que el fracaso

virológico es menor con EFV que con LPV/r cuando se combinan con ITIAN y que la pauta libre de ITIAN formada por EFV+LPV/r tiene una eficacia similar a la pauta de EFV+2 ITIAN, pero se asocia con más resistencia farmacológica en caso de fracaso²⁸².

Combinaciones de IP/r con RAL

En el estudio SPARTAN se incluyeron pacientes sin TAR previo que fueron aleatorizados en proporción 2:1 a recibir ATV sin potenciar, 300 mg BID + RAL 400 mg BID (n=63) o bien una combinación estándar de ATV/r, 300/100mg + FTC/TDF (N=31). El estudio fue interrumpido en la semana 24 por problemas de eficacia virológica y de seguridad. Durante las primeras 24 semanas se documentó fracaso virológico en 11 pacientes del brazo ATV+RAL y en 8 del brazo ATV/r+FTC/TDF. Resultaron aptos para el estudio genotípico de resistencias (CVP >4.000 copias/mL) 6 aislados del brazo ATV+RAL, en los que se detectaron mutaciones de resistencia a RAL en 4 (en el quinto se documentó resistencia fenotípica a RAL). Solo un aislado del brazo ATV/r+FTC/TDF cumplió criterios para la genotipificación, que no desveló ninguna mutación de resistencia. Hubo discontinuaciones por efectos adversos en 4/63 (6,3%) de los pacientes del brazo ATV+RAL y en ninguno de los pacientes del brazo ATV/r+FTC/TDF. Se documentó elevación de bilirrubina total de grado 4 en 13 (20,6%) de los pacientes con ATV+RAL y en ninguno de los pacientes del brazo ATV/r+FTC/TDF.

En el estudio PROGRESS se comparó LPV/r+RAL con LPV/r+TDF/FTC en 206 pacientes sin TAR previo. El objetivo primario de eficacia fue el logro de una CVP <50 copias/mL en la semana 48 por ITT-TLOVR. El objetivo primario del estudio se consiguió en un 83,2% de los pacientes del grupo de LPV/r+RAL y en el 84,8% del grupo de LPV/r (diferencia: -1,6%; IC 95%: -12,0 a 8,8). El grupo con RAL tardó menos tiempo en alcanzar la indetectabilidad que el grupo con TDF/FTC (p <0,001). La proporción de pacientes que interrumpió el estudio como consecuencia de los efectos adversos relacionados con el TAR fue del 2,0% en la rama de LPV/r+RAL y del 1,9% en la de LPV/r+TDF/FTC³¹⁹.

El estudio ACTG A5262 fue un estudio de brazo único donde se trataron 112 pacientes sin TAR previo con la combinación de DRV/r+RAL. Se consideró que existía fracaso virológico ante cualquiera de las 3 siguientes circunstancias: a) CVP confirmada ≥1.000 copias/mL en la semana 12; b) incremento de la CVP >0,5 log10 c/ml desde la semana 4 a la semana 12; o c) CVP >50 copias/mL en o a partir de la semana 24. Según un análisis por ITT, se documentó fracaso virológico a 24 semanas en el 16% de los pacientes (IC 95%: 10% a 24%) y a 48 semanas en el 26% (IC 95%: 19% a 36%). En un análisis ajustado por sexo y edad, el fracaso virológico se asoció con CPV >100.000 copias/mL (HR 3,76; IC 95%: 1,52 a 9,31, p = 0,004) y con cifras bajas de linfocitos CD4+ (0,77 por cada incremento de 100 células/μL; IC 95%: 0,61 a 0,98; p = 0,037). Las mutaciones de resistencia a RAL resultaron frecuentes en los pacientes con fracaso virológico y CPV >100.000 copias/mL³²⁰.

Combinaciones de IP/r con MVC

En el estudio A4001078 se aleatorizó a 121 pacientes sin TAR previo infectados por cepas de VIH-1 R5 trópicas a ATV/r+MVC 150 mg al día QD o a ATV/r+FTC/TDF. Todos los pacientes tratados con MVC tuvieron concentraciones plasmáticas superiores a la IC₅₀ del virus a lo largo de las 24 horas del intervalo de dosis. En la semana 24 tenían

CPV inferior a 50 copias/mL 54 de 61 (89%) pacientes aleatorizados al brazo de FTC/TDF y 48 de 60 (80%) de los pacientes aleatorizados al brazo de MVC. Se documentó hiperbilirrubinemia de grado 3-4 en 35 (59,3%) de los pacientes tratados con MVC y en 30 (49,2%) de los tratados con FTC/TDF. En ninguno de los 5 pacientes con fracaso virológico y muestras disponibles para genotipificación (3 con MVC y 2 con TDF/FTC) se documentó la existencia de mutaciones de resistencia a los fármacos ni tampoco hubo cambio de tropismo en los tratados con MVC³²¹.

Se han comunicado los resultados de un pequeño estudio piloto en pacientes sin TAR previo en el cual se ha estudiado la combinación de LPV/r+MVC QD en 17 pacientes frente a LPV/r+TDF/FTC en 15 pacientes, sin que se observaran diferencias en eficacia y seguridad entre ambos brazos en la semana 24³²².

Recomendaciones

- La monoterapia con un IP/r no se recomienda como tratamiento de inicio.
- No se deben usar pautas libres de ITIAN para el TAR de inicio (A-III). Esta recomendación se base en los siguientes puntos:
 - La necesidad de TAR de inicio sin ITIAN es ahora menos acuciante que en el pasado dado que los ITIAN de elección actuales (FTC/TDF, 3TC/ABC) son más eficaces y seguros que los usados previamente
 - De los estudios publicados se puede concluir que algunos FAR (por ejemplo, RAL) parecen mejor protegidos en combinación con dos ITIAN que en biterapia con un IP/r
 - Ninguna pauta sin ITIAN ha demostrado hasta la fecha claras ventajas frente a la triple terapia desde el punto de vista de la eficacia y seguridad

4.9. Primer TAR en pacientes con una condición definitoria de sida

Varios ensayos clínicos han estudiado el momento idóneo de iniciar del TAR en pacientes con infecciones oportunistas diagnósticas de sida. El ACTG A5164³²³ incluyó a pacientes con infecciones oportunistas diferentes de la tuberculosis y demostró que el TAR precoz (administrado antes de las 2 semanas del inicio del tratamiento del evento oportunista) redujo de forma significativa (49%) el riesgo de progresión clínica (nueva infección oportunista o muerte) con respecto a diferir el TAR (entre 30 y 270 días). Varios estudios han mostrado excelentes resultados del TAR precoz en pacientes con tuberculosis (véase más adelante), que no se han podido confirmar en la meningitis tuberculosa ni en la criptocócica. Dos ensayos clínicos efectuados respectivamente en Vietnam y en Uganda demostraron que el TAR precoz no redujo la mortalidad de la meningitis tuberculosa³²⁴ y la aumentó en la meningitis criptocócica³²⁵. Se desconocen las causas de tales resultados, pero probablemente el peor manejo clínico de estas dos infecciones oportunistas en países con escasos recursos y el SIRI en un compartimento cerrado como el SNC podrían justificarlo.

Con respecto a las neoplasias asociadas al sida (sarcoma de Kaposi, linfomas y carcinoma de cérvix) el TAR debe iniciarse de forma precoz evitando en lo posible en los pacientes que reciban quimioterapia la utilización de pautas con inhibidores de la proteasa debido a que aumentan su toxicidad.

Recomendaciones

- En pacientes que se diagnostican simultáneamente de la infección VIH-1 y de una infección oportunista definitoria de sida, el TAR debe administrarse precozmente (en el primer mes e idealmente en las primeras dos semanas) (A-I)
- Los pacientes con meningitis criptocócica (y tuberculosa) deben seguir controles estrictos durante el tratamiento, ya que son un grupo difícil de tratar por la gravedad intrínseca de la infección y las consecuencias nocivas de la recuperación inmunológica (SIRI) (B-II)

5. MODIFICACION DEL TRATAMIENTO ANTIRRETROVIRAL

5.1. SIMPLIFICACION

Se entiende por simplificación del TAR el cambio de un esquema terapéutico que ha conseguido la supresión de la replicación viral por otro más sencillo que sigue manteniendo la supresión. Sus objetivos son mejorar la calidad de vida, facilitar la adherencia y prevenir o revertir algunos efectos adversos.

Con la simplificación se consigue reducir el número de comprimidos o la frecuencia de tomas, aprovechar la comodidad de las coformulaciones, eliminar las restricciones alimenticias, mejorar los efectos secundarios y reducir o eliminar las interacciones.

Esta estrategia empezó a utilizarse con la aparición de los ITINN que permitían simplificar las pautas de tratamiento con IP de primera generación, que eran complejas y en general tóxicas.

Si bien en la actualidad la mayoría de pacientes inician tratamiento con pautas de TAR más simples, con los nuevos fármacos y las coformulaciones, existen cada vez más opciones para simplificar a pautas más cómodas y mejor toleradas.

Se puede simplificar el TAR reduciendo el número de fármacos, el número de comprimidos o el número de tomas.

Reducción del número de fármacos

Los primeros estudios de simplificación del TAR tuvieron como objetivo la reducción del número de FAR en lo que se denominó estrategia de inducción-mantenimiento, consistente en una primera fase de inducción con tres o cuatro FAR seguida del mantenimiento con menos de tres fármacos.

Los resultados de los primeros ensayos en los que se evaluó esta estrategia a partir de pautas con IP de primera generación fueron desalentadores. Los estudios más recientes han explorado la simplificación a monoterapia con IP/r, tras un período de inducción con triple terapia con pautas que incluyen ITIAN, y el mantenimiento con triple terapia con 2 ITIAN y un IP no potenciado (ATV) después de un período de inducción con IP/r (ATV/r).

Terapia de mantenimiento con un inhibidor de la proteasa potenciado con ritonavir

Se ha explorado la estrategia de simplificar a monoterapia con LPV/r, tras un tiempo de inducción con triple terapia que incluye a este fármaco. El estudio OK04, que incluyó a 205 pacientes con CVP indetectable durante al menos 6 meses (mediana: 28 meses), que estaban tomando un TAR que incluía LPV/r asociado a dos ITIAN. Es un estudio aleatorizado, abierto, de no inferioridad, que comparaba la estrategia de continuación del tratamiento triple frente a la monoterapia con LPV/r, considerando válida la reinducción con 2 ITIAN si aparecía un rebrote viral. A las 48 semanas el porcentaje de pacientes sin fracaso virológico fue de 90 y 94%, respectivamente (diferencia: -4%; límite superior del IC 95% para la diferencia 3,4%, cumpliendo el criterio de no-inferioridad de la monoterapia, con o sin reintroducción de los ITIAN, frente al tratamiento triple). El porcentaje de pacientes con CVP <50 copias/mL a las 48 semanas (ITT), considerando las reinducciones como fallos, fue del 85% en el grupo de monoterapia y 90% en el de continuación (p=0,31). Los episodios de viremia de bajo nivel, entre 50 y 500 copias/mL fueron más frecuentes en los pacientes tratados con monoterapia (4 frente a ninguno)³²⁶.

La terapia de mantenimiento con LPV/r fue evaluada en un ensayo clínico en el que se incluyeron 155 pacientes sin TAR previo, a los que se aleatorizó en una proporción 2:1 a iniciar tratamiento con ZDV/3TC junto con LPV/r (n=104) o con EFV (n=51). Entre las 24 y 48 semanas de tratamiento y tras al menos 3 controles con CVP <50 copias/mL, los pacientes que tomaban LPV/r pasaron a mantenimiento con LPV/r en monoterapia. Considerando fracaso a cualquier viremia detectable, a las 96 semanas de seguimiento un 48% de los pacientes en tratamiento con LPV/r y un 61% con EFV presentaban CVP <50 copias/mL (IC 95% de la diferencia: -29% a 4%; p=0,17). En un nuevo análisis en el que se incluyeron como respondedores a los pacientes que tras reintroducir los mismos ITIAN consiguieron de nuevo CVP <50 copias/mL, el 60% de pacientes en tratamiento con LPV/r y el 63% con EFV respondieron al tratamiento (IC 95%: -19% a 13%, p=0,73). Se objetivaron viremias de bajo nivel en los pacientes en monoterapia. Las alteraciones lipídicas de grado 3-4 fueron más frecuentes en el grupo del LPV/r³²⁷.

En estos dos estudios se pone de manifiesto la importancia del periodo durante el cual la CVP permanece indetectable antes del paso a monoterapia. Otros estudios, como el KalMo³²⁸, confirman estos resultados, pero en el caso del MOST³²⁹ hubo que suspenderlo precozmente. Se trataba de un ensayo clínico en el que se incluyeron pacientes con carga viral indetectable, que se aleatorizaron a continuar con el mismo tratamiento o a pasar a monoterapia con LPV/r. El objetivo primario fue el fallo virológico en el sistema nervioso central y/o tracto genital. El fallo virológico a nivel sanguíneo se definió como la presencia de dos cargas virales consecutivas superiores a 400 células/μL. Se incluyeron 60 pacientes, 6 pacientes de la rama de monoterapia presentaron fallo virológico, todos ellos con una cifra nadir de linfocitos CD4⁺ inferior a 200 células/μL y

en las primeras 24 semanas de tratamiento. Además, 5 de ellos tenían una CVP elevada en LCR y 4 sintomatología neurológica. La reintroducción de los ITIAN bloqueó de nuevo la replicación viral. Los autores concluyeron que esta es una estrategia que no puede recomendarse de forma general y que hay que seleccionar a los pacientes.

La estrategia de mantenimiento con un IP/r ha sido también explorada con ATV/ $r^{330,331}$ y DRV/ $r^{332-341}$.

Se dispone de resultados preliminares de dos estudios piloto, abiertos, de un solo brazo de simplificación a ATV/r, el ACTG 5201³³⁰ y OREY³³¹. En el estudio OREY se incluyeron 61 pacientes que no habían tenido ningún fracaso previo (CVP <50 copias/mL, al menos 24 semanas). En el análisis a las 48 semanas, el 79% de los pacientes tenía una CVP inferior a 400 copias/mL. La reintroducción de la triple terapia fue generalmente satisfactoria (7 de 9 pacientes). El desarrollo de mutaciones primarias a IP fue raro³³¹. No se han realizado estudios aleatorizados con ATV/r en monoterapia.

Con DRV/r, se han realizado dos ensayos clínicos aleatorizados importantes, el MONET y el MONOI. En el estudio MONET³³² se incluyeron 256 pacientes en TAR con 2 ITIAN y un ITINN o un IP/r sin experiencia previa a DRV/r ni historia de fallo virológico, con carga viral indetectable (<50 copias/mL) durante al menos 6 meses. Se les aleatorizó a DRV/r (800/100 QD) (n= 129) en monoterapia o en combinación con 2 ITIAN optimizados (n= 127). Se trata de un estudio de no-inferioridad en el que el objetivo primario fue el tiempo hasta la pérdida de la respuesta virológica (TLOVR). Se definió el fracaso terapéutico por la presencia de dos determinaciones consecutivas de CVP superior a 50 copias/mL antes de la semana 48 o por la suspensión del tratamiento en estudio. En el análisis a la semana 48 se confirmó la no-inferioridad de la rama de DRV/r en monoterapia. En el análisis por ITT, considerando el cambio de tratamiento como un fracaso, el 85,3% de los pacientes que tomaban DRV/r frente al 84,3% de los que tomaban además 2 ITIAN presentaban CVP indetectable (diferencia: -1; límite inferior del IC 95%: -9,9). En cuanto a la aparición de resistencias, se detectó un paciente por rama con resistencia genotípica, pero no fenotípica, a DRV. En la semana 96 no pudo demostrarse la no-inferioridad de la rama de monoterapia en el análisis primario (CVP<50 copias/mL, TLOVR, cambio=fracaso): 78% frente a 82% en los brazos de monoterapia y triple terapia, respectivamente (IC 95%: -14.3% a 5.8%)³³³. Las diferencias en favor de la triple terapia se mantenían en un análisis efectuado en la semana 144: 69% frente a 65% (diferencia: -5,9%; IC 95%: -16.9% a 5.1%)334. En general, la tasa de blips y discontinuaciones fue superior en la rama de monoterapia, si bien en la mayoría de los casos observó una resupresión posterior con el mismo tratamiento o tras intensificación³³⁶. De hecho, a las 144 semanas, en el análisis por ITT sin considerar como fracaso la reintroducción de nucleósidos, la monoterapia cumplió el criterio de no-inferioridad respecto a la terapia triple (84% frente a 83.5%; IC 95%: -8.7% a 9.7%)³³⁴.

En el estudio MONOI³³⁸ se incluyeron pacientes en TAR que presentaban CVP inferior a 400 copias/mL durante los 18 meses previos y CVP inferior a 50 copias/mL en el momento de la inclusión, sin historia de fallo virológico a IP y que no habían recibido nunca DRV/r. Constaba de dos fases: en la primera se introducía en el tratamiento DRV/r en la semana -8 y en la segunda se les aleatorizaba en proporción 1:1 a DRV/r (600/100 mg BID) o a DRV/r (600/100 BID) + 2 ITIAN. El objetivo primario fue la proporción de pacientes que mantenían la respuesta virológica en la semana 48 (CVP <400 co-

pias/mL), aunque el seguimiento fue más prolongado. En la fase inicial se incluyeron 242 pacientes y se aleatorizaron 226. En el análisis por protocolo, DRV/r en monoterapia logró demostrar la no-inferioridad (delta 10%) frente a la triple terapia (94,1% frente a 99,0%; IC 95%: -9.1% a -0.8%), pero no en el análisis por ITT (87,5% frente a 92%; IC 95%: -11.2% a 2.1%). Se produjeron tres fracasos virológicos (>400 copias/mL) en pacientes con DRV/r en monoterapia, sin detectarse mutaciones de resistencia para DRV, y con posterior resupresión viral tras la reintroducción de los ITIAN. Los factores asociados con fracaso virológico en los pacientes en monoterapia con DRV/r fueron la presencia de un blip inicial, un menor tiempo en TAR antes de la monoterapia y una adherencia menor del 100% durante la monoterapia³³⁹. En la semana 96, en el análisis por ITT, 91 de los 103 pacientes del brazo de la monoterapia (88%; IC 95%: 81-94) y 87 de 104 en el brazo de la triple terapia (84%; IC 95%: 75-90) presentaron CVP indetectable. Por protocolo fueron 95% y 90% respectivamente. Entre la semana 48 y la 96 se produjeron seis fracasos virológicos. Dos en el brazo de la monoterapia y cuatro en el de la triple terapia. Las causas principales fueron baja adherencia e interrupción del tratamiento. En los casos de fracaso en la monoterapia la reintroducción de los ITIAN hizo recuperar la CVP indetectable. No aparecieron mutaciones de resistencia a DRV ni acumulación de mutaciones a ITIAN en los pacientes que fracasaron³⁴⁰. Si bien dos pacientes con CVP indetectable presentaron síntomas neurológicos (cefalea y crisis convulsiva en un paciente con epilepsia no tratada) con carga viral detectable en el LCR, el análisis citobioquímico del LCR en ambos casos fue normal. Este hallazgo cuestionaría la capacidad de la monoterapia para mantener la supresión del VIH-1 en el sistema nervioso central. Recientemente se han presentado los datos de redistribución de grasa corporal, observándose menores cambios en la rama que no llevaba ITIAN, al igual que en otros estudios previos³⁴¹.

Recientemente se han publicado los resultados de una revisión sistemática de los ensayos clínicos aleatorizados en los que se comparó la terapia de mantenimiento con IP/r solos frente a la triterapia en pacientes suprimidos³⁴². Se analizaron los datos de 10 ensayos clínicos, que incluyeron un total de 1.189 pacientes. Con el criterio de valoración más conservador (CVP <50 copias/mL en dos determinaciones consecutivas), el cociente de riesgos de supresión virológica a las 48 semanas de la monoterapia en comparación a la triterapia en el análisis por ITT fue de 0,94 (IC 95%: 0,89 a 1,00) y en el análisis PP de 0,93 (IC 95%: 0,90 a 0,97). La reintroducción de los ITIAN en 44 pacientes con fracaso virológico logró la resupresión viral en el 93% de los casos. Los autores concluyen que los pacientes virológicamente bien suprimidos con una adherencia excelente podrían optar por la monoterapia de mantenimiento con IP/r si se considera de gran importancia evitar las complicaciones a largo plazo de los nucleósidos que están recibiendo. El incremento absoluto del riesgo de fracaso virológico al año con la monoterapia se sitúa aproximadamente en el 10-13% en el peor de los casos, con una alta probabilidad de recuperar el control virológico cuando se reintroducen los ITIAN. La monoterapia no sería una opción para médicos y pacientes que no estén dispuestos a aceptar ese riesgo. La ausencia de resultados de seguimiento a largo plazo y la escasez de datos en relación a la replicación del VIH-1 en el sistema nervioso central, son también obstáculos para recomendar un uso más extendido de esta estrategia.

Terapia de mantenimiento con un inhibidor de la proteasa potenciado con ritonavir en combinación con lamivudina

Una nueva estrategia terapéutica, actualmente en evaluación, es la simplificación a una pauta de biterapia con 3TC y un IP/r en pacientes con supresión de la replicación viral bajo un régimen de triple terapia. Esta estrategia se ha explorado en un ensayo clínico piloto realizado recientemente en Italia³⁴³, en el cual se incluyeron 40 pacientes tratados con un régimen de ATV/r + 2 ITIAN que tenían la CVP <50 copias/mL durante al menos un periodo de tres meses. Alcanzaron la semana 48 del estudio 38 pacientes. La simplificación del tratamiento a ATV/r + 3TC fue segura y eficaz. Dos pacientes presentaron fracaso virológico, en ambos casos sin mutaciones de resistencia y con resupresión de la replicación viral tras la reintroducción de los ITIAN. En ambos pacientes las concentraciones plasmáticas de ATV fueron indetectables. Más recientemente se ha comunicado que a las 96 semanas tras el inicio del estudio el 85% de los pacientes continuaba presentando CVP indetectable en el análisis por ITT)³⁴⁴. Esta estrategia se está evaluando actualmente en un ensayo clínico multicéntrico aleatorizado (Estudio SALT-GeSIDA 7011; clinicaltrials.gov: NCT01307488).

Terapia de mantenimiento con atazanavir no potenciado con ritonavir

Se trata de una estrategia de inducción-mantenimiento que consiste en iniciar un tratamiento con ATV/r y posteriormente suspender RTV con el fin de evitar los efectos secundarios que produce éste, incluso a dosis bajas. Los estudios más significativos son el INDUMA y el ARIES. El INDUMA³⁴⁵ es un estudio aleatorizado, abierto, multicéntrico de no-inferioridad, en el que se incluyeron 252 pacientes sin TAR previo, que iniciaron un tratamiento de inducción con 2AN + ATV/r. Entre las semanas 26 y 30, los que tenían CVP <50 copias/mL y seguían con el tratamiento (n=172) se aleatorizaban 1:1 a continuar con el mismo tratamiento o a recibir 2 ITIAN + ATV 400 mg QD, con un seguimiento de 48 semanas. La variable primaria fue la proporción de pacientes que mantenían CVP <50 copias/mL a las 48 semanas. La mitad de los pacientes llevaban ABC/3TC como pareja de ITIAN. En la semana 48 la rama de ATV demostró noinferioridad con respecto a la de ATV/r (la proporción de pacientes con CVP <50 copias/mL fue 75% (n= 85) en la rama de ATV/r y 78% (n=87) en la rama de ATV (diferencia: 2,9; IC 95%: -9,8 a 15,5). En cuanto al perfil de seguridad, se produjeron menos casos de hiperbilirrubinemia y de dislipemia en la rama de ATV. Los autores concluyeron que ésta es una opción para pacientes que no toman tenofovir. No se detectaron resistencias frente a IP en los pacientes que presentaron fracaso virológico de ninguno de ambos brazos.

De forma similar, el estudio ARIES^{346,347} es un ensayo clínico abierto, multicéntrico, de no-inferioridad, en el que se incluyó a pacientes sin TAR previo a los que se pautó ABC/3TC + ATV/r y posteriormente, en la semana 36, se aleatorizaron en razón 1:1 a seguir con el mismo régimen o a suspender RTV durante 48 semanas, si la CVP era inferior a 50 copias/mL y previamente no habían presentado fallo virológico. Se aleatorizaron 419 pacientes, incluyéndose en el análisis a los 379 (90%) que completaron las 48 semanas de seguimiento. El objetivo primario fue la proporción de pacientes con CVP inferior a 50 copias/mL en la semana 48 (TLOVR). Los autores observaron que la eficacia de ambos tratamientos es similar, independientemente de la CVP basal (86% frente a 81% en los brazos de ATV y ATV/r, respectivamente (IC 95%: -1,75 a 12,48),

siendo infrecuente el fallo virológico (2%). La eficacia se mantuvo en el análisis efectuado a las 144 semanas y tanto el perfil lipídico como los valores de bilirrubina fueron más favorables en el grupo de simplificación a ATV³⁴⁸.

La simplificación a una pauta con ATV no potenciado en combinación con ABC/3TC en pacientes HLA-B*5701-negativos con supresión virológica (<75 copias/mL) durante al menos 6 meses con un régimen de ATV/r + TDF/FTC se ha evaluado recientemente en el estudio ASSURE, un ensayo clínico abierto en el que 296 pacientes fueron aleatorizados en proporción 2:1 a recibir ATV + ABC/3TC (n=199) o a continuar con la pauta previa de ATV/r + TDF/FTC (n=97). El objetivo principal de este estudio fue demostrar la no-inferioridad (delta: 12%) de ATV + ABC/3TC, y su variable principal la proporción de pacientes con CVP indetectable (<50 copias/mL) en la semana 24 mediante un análisis TLOVR. En una comunicación preliminar de los resultados se ha informado que en la semana 24 presentaban CVP indetectable el 86,9% de los pacientes de la rama de ATV + ABC/3TC frente al 86,6% de los que continuaron recibiendo ATV/r + TDF/FTC (IC 95%: -7.97 a -8.64%). Así pues, la pauta de ATV + ABC/3TC cumplió el criterio predefinido de no inferioridad de los biomarcadores del metabolismo óseo (fosfatasa alcalina, PTH, telopéptido C y osteocalcina) 349.

Reducción del número de comprimidos y/o de dosis

La reducción del número de comprimidos y/o de dosis puede conseguirse sustituyendo el IP por un FAR de otro grupo o utilizando fármacos que se presentan coformulados. Se ha evaluado la sustitución del IP/r por EFV, NVP o ABC y también por otro IP/r que se pueda administrar en QD.

Simplificación con EFV

Se han realizado múltiples estudios evaluando esta estrategia, muchos de ellos no comparativos. La mayoría de los ensayos comparativos incluyeron un escaso número de pacientes y casi todos se realizaron a partir de pautas con IP de primera generación. En general, esta estrategia fue comparable o mejoró los resultados virológicos en relación a la pauta comparadora con IP no potenciados de primera generación 350-353.

En un estudio más reciente, que incluyó 262 pacientes que realizaban TAR basado en IP/r y con CVP <50 copias/mL, se cambió el mismo a EFV en una pauta QD (EFV+ddI+3TC) o BID (EFV con los ITIAN de base). El estudio fue abierto, aleatorizado y de no-inferioridad y su objetivo primario fue el mantenimiento de supresión virológica en la semana 48. La pauta QD no fue inferior a la BID. En general, ambas pautas se asociaron con una baja tasa de fallo virológico y con una mejora importante de la satisfacción de los pacientes, de la adherencia y de la calidad de vida. Los autores concluyeron que el cambio de un IP/r a EFV es seguro y bien tolerado³⁵⁴.

Simplificación con NVP

Como en el caso de EFV, la mayoría de los ensayos en los que se ha evaluado esta estrategia han incluido un escaso número de pacientes y casi todos se realizaron a partir de pautas con IP de primera generación En general, la eficacia terapéutica a las 24-48

semanas fue similar a la pauta de continuación con el IP no potenciado y en la mayoría se observó una mejoría del perfil lipídico³⁵⁵⁻³⁵⁷. En uno de los estudios la eficacia virológica fue mayor en el grupo de simplificación³⁵⁸. En un estudio español reciente (MULTINEKA) se aleatorizó a 67 pacientes en TAR estable y con CVP inferior a 50 copias durante al menos 6 meses a recibir LPV/r con NVP o con dos ITIAN. A las 48 semanas de tratamiento, no se detectó fracaso virológico en ninguno de los pacientes. Se describió un posible beneficio en la toxicidad mitocondrial, en los pacientes aleatorizados a NVP³⁵⁹.

NVP está contraindicada en mujeres con más de 250 linfocitos $CD4^+/\mu L$ y en varones con más de 400 linfocitos $CD4^+/\mu L$ por riesgo de hepatotoxicidad grave. Sin embargo, varios estudios independientes ³⁶⁰⁻³⁶⁶ han coincidido en señalar que cuando se introduce NVP como una estrategia de simplificación en pacientes pretratados con cifras de linfocitos $CD4^+$ por encima de esos límites, el riesgo de toxicidad es mucho menor que en los pacientes que previamente no han realizado TAR. Estos resultados son suficientemente consistentes y han llevado a modificar la ficha técnica del producto (véase ficha técnica).

Simplificación con ABC y otros análogos de nucleósido

Los resultados de los ensayos clínicos que han evaluado esta estrategia no han sido concluyentes y han puesto de manifiesto el riesgo de fracaso virológico que la misma lleva asociado.

En el estudio TRIZAL y en otros, la eficacia fue similar, pero se observó una mayor incidencia de fracasos en pacientes que previamente habían recibido tratamientos subóptimos^{353,367,368}. En el estudio TRIZEFAL 209 pacientes fueron aleatorizados a recibir ZDV/3TC/ABC en combinación fija con EFV o LPV/r, durante 24-36 semanas. Los pacientes que alcanzaron una CVP inferior a 50 copias mL en ambos brazos continuaron con ZDV/3TC/ABC. A las 72 semanas, en el análisis por ITT, sólo el 31% y el 43%, respectivamente, mantuvieron la CVP indetectable; el 34% y 25% de ellos cambiaron la pauta por toxicidad³⁶⁹.

En distintos estudios se ha puesto de manifiesto la existencia de un riesgo elevado de fracaso terapéutico y desarrollo de mutaciones a ITIAN cuando se utilizan pautas de simplificación con 3TC/ABC+TDF³⁷⁰ y 3TC+ddI+TDF, por lo que, pese a su sencillez, ambos regímenes se desaconsejan como estrategia de simplificación.

Comparación directa de EFV, NVP y ABC en simplificación

En el ensayo NEFA se aleatorizaron 460 pacientes en tratamiento con 2 ITIAN + 1 IP y, con CVP inferior a 200 copias/mL durante al menos 6 meses³⁷¹ a recibir NVP (n=155), EFV (n=156) o ABC (n=149). El 50%, 58% y 46% de los pacientes, respectivamente, habían recibido previamente regímenes de TAR subóptimos con uno o dos ITIAN. La eficacia terapéutica (CVP <200 copias/mL) por ITT a las 48 semanas fue similar en los tres grupos (77%, 72% y 77%; p=NS). Se produjeron más fracasos virológicos con ABC (6%, con NVP, 4% con EFV y 12% con ABC; p<0,05), sobre todo en los pacientes que habían recibido previamente tratamientos subóptimos. Estos resultados se han confirmado a los 3 años³⁷². El análisis genotípico de las cepas de los pacientes con fracaso virológico

evidenció un mayor número de mutaciones de resistencia asociadas a ITIAN entre los que recibieron ABC³⁶⁸. El número de pacientes que suspendió el tratamiento por efectos adversos fue menor en el grupo de ABC (17% con NVP, 17% con EFV y 6% con ABC; p<0,01). La simplificación a cualquiera de los ITINN, sobre todo a NVP, produjo beneficios en el perfil lipídico, con reducción del colesterol no-HDL con ABC. Los niveles de triglicéridos se redujeron en los tres brazos. Los marcadores de resistencia a la insulina mostraron una tendencia a la mejoría. Sin embargo, no mejoraron las alteraciones en la distribución de la grasa^{373,374}.

Simplificación con atazanavir

El ATV es un IP de dosificación QD con buen perfil metabólico, que ha permitido una nueva estrategia de simplificación en la que un IP sustituye a otro.

El SWAN es un estudio abierto en fase IIIb, en el que 419 pacientes en tratamiento estable con IP (potenciado o no) y con CVP indetectable se aleatorizaron 2:1 a ATV 400 mg QD (en caso de tomar TDF se pautó ATV/r 300/100 mg) (n=278) o a continuar con el IP (n=141). A la semana 48 el fracaso virológico fue menor en los que se simplificó el TAR a pautas con ATV (7% frente a 16%; p<0,01)³⁷⁵. En cuanto a la seguridad, las suspensiones del tratamiento fueron más frecuentes en los pacientes del grupo control que en los que simplificaron a ATV (21% frente a 34%; p<0,01) y el perfil lipídico fue mejor en el grupo que simplificó a ATV. Los datos de los estudios ATAZIP y SIMPATAZ confirman la seguridad y eficacia de esta estrategia de simplificación, en este caso cambiando LPV/r por ATV/r^{376,377}.

El estudio REAL es un ensayo clínico en el que se incluyó a 201 pacientes en TAR estable durante al menos 12 semanas con pautas que contenían un IP administrado BID, con CVP indetectable y lipohipertrofia, a los que se aleatorizaba a continuar con el mismo tratamiento o cambiar el IP a ATV/r (300/100 mg). El control inmuno-virológico se mantuvo, se observó una mejoría del perfil lipídico en la rama de ATV pero no se objetivaron diferencias en cuanto a la composición corporal tras 96 semanas de seguimiento³⁷⁸.

Otra estrategia es la evaluada en el estudio Al424-067³⁷⁹, un ensayo abierto en el que se incluyeron 246 pacientes en tratamiento con un IP/r y con hiperlipidemia y CVP inferior a 50 copias/mL. Se aleatorizaron los pacientes a cambiar a ATV (400 mg) en el día 1 (cambio inmediato) o mantener su tratamiento y cambiar a ATV (400 mg) a las 24 semanas (cambio retrasado). A las 12 semanas, en los pacientes que cambiaron a ATV mostraron una mejoría significativa de las cifras de LDL-colesterol (-15 y +1%, respectivamente ; p<0,0001). Los dos grupos tuvieron una eficacia virológica similar a las 48 semanas, aunque la frecuencia de fracaso terapéutico (CVP >50 copias o discontinuación del tratamiento) superó el 20% en ambos. Los autores concluyeron que el cambio inmediato o diferido de un IP potenciado a ATV no potenciado en pacientes con hiperlipemia se asocia con mejoría en los parámetros lipídicos sin pérdida de la supresión virológica.

El cambio a un régimen QD es una de las formas de simplificación más atractivas en pacientes virológicamente suprimidos con pautas más complejas. Los resultados de un meta-análisis sugieren que con las pautas QD la adherencia es mejor que con los regímenes BID³⁸⁰. El cambio a una pauta QD en pacientes que han alcanzado la supresión virológica con pautas más complejas se ha evaluado en varios ensayos clínicos.

En un ensayo clínico realizado en Francia se aleatorizaron 355 pacientes virológicamente suprimidos con pautas que contenían IP (la mayoría no potenciados) a seguir con su TAR o cambiar a una terapia QD (ddl+FTC+EFV). En la semana 48 seguían con CVP indetectable el 87% de los pacientes de la rama QD y el 79% de los que no habían cambiado el tratamiento (p<0,05)³⁸¹. En un estudio español no aleatorizado se analizó a 169 pacientes virológicamente suprimidos con TAR, de los que 84 siguieron con el mismo régimen de TAR y 85 cambiaron a una pauta con ddl+TDF+ NVP QD; la eficacia virológica de la pauta QD fue buena (86% frente a 76% por ITT), pero el número de linfocitos CD4⁺ disminuyó en la rama QD (decremento medio de 95 células/μL)³⁸².

Otros ensayos clínicos han confirmado que la combinación ddI+TDF es eficaz virológicamente pero que con ella la recuperación de linfocitos CD4⁺ es menor o incluso se produce una caída del número de CD4⁺ aunque la CVP esté suprimida. Este descenso era más patente cuando se administraban las dosis estándar (plenas) de ddI³⁸³. Los regímenes de administración QD que contengan la combinación ddI+TDF deben evitarse. De hacerlo se debe reducir la dosis de ddI a 250 mg/día en pacientes con más de 60 Kg de peso y a 200 mg/día en pacientes por debajo de dicho peso.

Con la aparición de las combinaciones a dosis fijas de ITIAN administrados QD las pautas de TAR se han simplificado aún más. Estas pautas se emplean cada vez más en el TAR de inicio y diversos ensayos clínicos han demostrado que son eficaces y seguras en simplificación. El SWEET es un ensayo clínico en el que 234 pacientes en tratamiento durante al menos 6 meses con ZDV/3TC (coformulados) + EFV y con CVP inferior a 50 copias/mL, se aleatorizaron a TDF/FTC (coformulado) + EFV o a seguir con el mismo tratamiento. A las 24 semanas se observó una mejoría en las cifras de hemoglobina y en el perfil lipídico en la rama de TDF/FTC, manteniéndose la respuesta al tratamiento (CVP <50 copias/mL; 93% frente a 88%; p=0,26). A las 48 semanas³⁸⁴ un 5% de los pacientes que continuaron con ZDV/3TC y un 3% de los que cambiaron a TDF/FTC, discontinuaron el tratamiento por efectos adversos. No se objetivaron diferencias estadísticamente significativas de eficacia virológica entre las dos ramas (85% de los pacientes que continuaron el tratamiento frente al 88% de los que lo cambiaron tenían una CVP inferior a 50 copias/mL en el análisis por ITT). En un subestudio de 100 pacientes a los que se realizó DEXA del tejido graso, se observó que la cuantía de grasa se mantuvo o aumentó en los pacientes que cambiaron a TDF/FTC, pero disminuyó en el grupo que continuó con ZDV/3TC (diferencia media de 448 g; IC 95%: 57 a 839 g; p=0,025). No se observaron diferencias entre los dos grupos en cuanto a toxicidad renal. Los investigadores concluyeron que el cambio de ZDV/3TC por TDF/FTC en pacientes en tratamiento con EFV y respuesta virológica mantenida es seguro desde el punto de vista virológico y se asocia con un incremento de la cifra de hemoglobina y una mejoría de los parámetros lipídicos y de la distribución de la grasa corporal.

Los beneficios del cambio de ZDV/3TC a TDF/FTC fueron confirmados en un estudio español, el ensayo RECOMB. En este ensayo abierto se incluyó a 80 pacientes con CVP inferior a 50 copias/mL en tratamiento con ZDV/3TC (+ 1 IP ó 1 ITINN), a los que se

aleatorizó a seguir con ZDV/3TC o cambiar a TDF/FTC. En la semana 24, el 85% de los pacientes en tratamiento con TDF/FTC presentaba una CVP inferior a 50 copias/mL frente a un 80% cde los que recibían ZDV/3TC (p=0,77)³⁸⁵. Se observó además un incremento significativo de grasa en las extremidades en los pacientes cuya masa grasa basal era inferior a 7,2 kg. Por último mejoraron las cifras de colesterol-LDL en los pacientes de la rama de TDF/FTC. A las 72 semanas el 90% de los pacientes que recibieron TDF/FTC frente al 83% de los tratados con AZT/3TC presentaban una CVP inferior a 50 copias/mL (p= 0.52); la mediana de incremento de la cifra de linfocitos CD4⁺ fue similar. Además, en el grupo de TDF/FTC se observó un incremento progresivo de grasa en las extremidades, sobre todo si el índice de masa corporal basal era superior a 25 Kg/m² y llevaban más de 5 años con AZT/3TC. Otro ensayo similar es el TOTEM, en el que se incluyó a 91 pacientes con CVP inferior a 400 copias/mL y dislipemia, a los que se aleatorizó a seguir con los mismos ITIAN (más del 50% de ellos con ZDV/3TC) o cambiar a TDF/FTC. En los pacientes que cambiaron se observó una mejoría significativa en el perfil lipídico (triglicéridos y colesterol-LDL) a las 12 semanas³⁸⁵.

En el estudio BICOMBO se analizó la eficacia y seguridad de la simplificación con ABC/3TC frente a TDF/FTC. Se trataba de un estudio aleatorizado y abierto, que incluyó a 335 pacientes que recibían tratamiento con un régimen que incluía 3TC, con supresión virológica durante al menos 6 meses y que fueron aleatorizados a sustituir los ITIAN por las combinaciones coformuladas de ABC/3TC (n= 167) o TDF/FTC (n= 168)³⁸⁶. El estudio se diseñó para evaluar la no-inferioridad de ambas combinaciones respecto a fracaso terapéutico o virológico. En el grupo de TDF+FTC, la proporción de fracaso terapéutico fue 13,3% frente a 19,2% en el de ABC+3TC, no demostrándose la noinferioridad de ABC/3TC frente a TDF/FTC (IC 95%: -2 a 14%). Sin embargo ABC/3TC demostró la no-inferioridad frente a TDF/FTC en el objetivo de fracaso virológico (2,4% frente a 0%; IC 95%: 0,05 a 6%). Las suspensiones por efectos adversos fueron del 10% en el grupo de ABC/3TC frente al 5% en el grupo de TDF+FTC (p=0,004). En cuanto al perfil lipídico, las reducciones en las cifras de colesterol total, HDL, LDL y triglicéridos fueron mayores en la rama de TDF/FTC y en un subestudio metabólico los pacientes que recibieron ABC/3TC presentaron un perfil lipídico más aterogénico³⁸⁷. No se hallaron diferencias significativas entre las dos ramas en lo que respecta a las concentraciones de los biomarcadores de riesgo cardiovascular³⁸⁸.

El incremento en la cantidad de grasa periférica y las alteraciones en la función renal o la densidad mineral ósea fueron similares. La toxicidad hepática fue muy baja en ambos grupos. La determinación previa del HLA-B*5701 podría haber modificado estos resultados.

El diseño del estudio STEAL fue similar al del BICOMBO, pero se determinó previamente el HLA-B*5701. En este estudio abierto, programado para 96 semanas, se incluyeron 357 pacientes HLA-B*5701 negativos con CVP<50 copias/mL, a los que se aleatorizó a sustituir la pareja de ITIAN por los combos ABC/3TC o TDF/FTC. El objetivo primario fue el fallo virológico (dos determinaciones consecutivas >400 copias/mL en ITT). Los objetivos secundarios incluían sida, muerte, efectos adversos, eventos graves no relacionados con sida, alteraciones metabólicas y composición corporal. El fallo virológico fue muy poco frecuente (5,6% en pacientes con ABC/3TC y 3,9% en los que tomaban TDF/FTC; IC 95%: -2.8% a 6.1%; p= 0,62). La combinación TDF/FTC se asoció con menos eventos no-sida que la formada por ABC/3TC (1,2 frente a 4,8 eventos por 100

pacientes-año; HR: 0,24; IC 95%; 0,08-0,73; p=0.012), debido sobre todo a una menor incidencia de eventos cardiovasculares. En el grupo de TDF/FTC se produjo un descenso significativo en la densidad mineral ósea (media de la diferencia en el *score* t de la cadera: 0,16; IC 95%: 0,08-0,23;p <0.001), aunque no hubo una mayor incidencia de fracturas³⁸⁹. De forma similar al estudio BICOMBO, se realizó también un estudio exhaustivo de biomarcadores de riesgo cardiovascular y no se encontraron diferencias entre los dos grupos comparativos³⁹⁰.

La simplificación a una pauta QD con TDF/FTC/EFV coformulados fue evaluada en un ensayo clínico abierto, aleatorizado, en pacientes con diferentes pautas de TAR virológicamente controlados³⁹¹. Se incluyeron en él pacientes que presentaban una CVP inferior a 200 copias/mL durante al menos tres meses. Se estatificaron en función de que estuvieran tomando ITINN o IP y se aleatorizaron 2:1 a simplificar el tratamiento a TDF/FTC/EFV coformulados (una tableta única diaria) o a seguir con el mismo tratamiento. Se evaluó la eficacia y la seguridad en el momento basal y a las semanas 4, 12, 24, 36 y 48. Además, se valoró la calidad de vida y las preferencias de los pacientes en cuanto a los FAR. De los 300 pacientes incluidos, 97 continuaron con el mismo tratamiento. A las 48 semanas, el 89% de los pacientes con TDF/FTC/EFV frente al 88% de los que continuaron con el mismo tratamiento presentaban una CVP inferior a 200 copias/mL (análisis TLOVR; IC 95%: -6,7% a 8,8%), indicando no-inferioridad de la rama de TDF/FTC/EFV. El 87% de los pacientes que cambiaron a TDF/FTC/EFV frente al 85% de los que no cambiaron el tratamiento presentaban una CVP inferior a 50 copias/mL (IC 95%: -5,9% a 11,1%). Las tasas de discontinuación fueron similares, aunque la suspensión por efectos adversos fue más frecuente en la rama de TDF/FTC/EFV (5% frente a 1%), sobre todo por sintomatología relacionada con el SNC. No se objetivaron diferencias en la tasa de filtrado glomerular, ni en la adherencia, pero sí una mejoría en la cifra de triglicéridos en la rama de TDF/FTC/EFV (-20 frente a -3 mg/dl; p= 0,035). En cuanto a los datos de calidad de vida³⁹², los pacientes en los que se simplificó el TAR referían una mejoría de muchos de los síntomas relacionados con el VIH, encontraban el nuevo tratamiento más fácil de tomar y de seguir y lo preferían frente a los regímenes de TAR previos.

En el estudio NODY³⁹³ se evaluó la eficacia y la seguridad de la simplificación de NVP desde una pauta convencional de dos veces al día a una de una vez al día. Se trataba de un estudio de 48 semanas, abierto, en el que se incluyeron 298 pacientes estables que estaban tomando NVP dos veces al día durante al menos 12-18 semanas y presentaban una CVP inferior a 50 copias/mL. Estos pacientes se aleatorizaron a continuar con el mismo tratamiento o a tomar nevirapina QD. El objetivo primario fue la seguridad hepática del tratamiento QD, para lo cual se analizó la proporción de pacientes con ALT/AST de grado 3-4, y los objetivos secundarios fueron el desarrollo de hepatitis clínica y la eficacia inmuno-virológica y clínica. Se definió la no-inferioridad con un delta del 10% para el desarrollo de hepatotoxicidad. El estudio demostró no-inferioridad por protocolo de NVP QD frente a la pauta inicial de dos veces al día.

La simplificación a una pauta QD con una coformulación a dosis fijas de RPV/TDF/FTC ha sido evaluada en el estudio SPIRIT, un ensayo clínico abierto, aleatorizado, en pacientes con supresión de la replicación viral (CVP <50 copias/mL) durante al menos 6 meses con un régimen de un IP/r + 2 ITIAN³⁹⁴. No se incluyeron en él pacientes que hubiesen recibido previamente ITINN o tuviesen resistencia genotípica conocida frente

a estos fármacos, ni que hubiesen sido tratados previamente con más de dos pautas distintas de TAR. Los 476 pacientes incluidos fueron aleatorizados a razón 2:1 a recibir RPV/TDF/FTC o a continuar con la pauta previa. El 37% de los pacientes estaban recibiendo ATV/r, el 33% LPV/r y el 20% DRV/r. El objetivo principal del estudio fue demostrar la no inferioridad (delta: 12%) de la simplificación a RPV/TDF/FTC, y su variable primaria la proporción de pacientes con CVP inferior a 50 copias/mL en la semana 24 (análisis *snapshot* de la FDA). En el análisis a las 24 semanas presentaban CVP indetectable el 93,7% de los pacientes del grupo tratado con RPV/TDF/FTC frente al 89,9% de los que continuaron con el régimen del IP/r (diferencia: 3,8%; IC 95%: -1,6% a 9,1%), cumpliendo así la pauta QD de RPV/TDF/FTC el criterio de no-inferioridad predefinido. En el grupo de RPV/TDF/FTC se registraron menos acontecimientos adversos gastrointestinales y el perfil lipídico fue más favorable que en los que continuaron con IP/r, observándose diferencias estadísticamente significativas (*P* <0,001) a favor de RPV/TDF/FTC en todos los parámetros, incluyendo el cociente colesterol total/ colesterol HDL³⁹⁴.

Otros tipos de simplificación

Con el desarrollo de fármacos de nuevas familias, en estos últimos años se han realizado ensayos de simplificación en pacientes multitratados, en los que se la evaluado la eficacia y la seguridad de la sustitución de ENF (parenteral) por otros FAR de administración oral. En la mayoría de los estudios se ha sustituido ENF por RAL, manteniéndose la eficacia del tratamiento³⁹⁵⁻³⁹⁹. Aunque la mayoría de ellos fueron estudios observacionales, se han comunicado los resultados de un ensayo clínico⁴⁰⁰ en el que se incluyó a 170 pacientes con VIH-1 resistente a las tres familias clásicas de FAR, que tenían una CVP inferior a 400 copias/mL durante al menos 3 meses bajo tratamiento con ENF. Se les aleatorizó a razón 1:1 a seguir con ENF o a cambiar a RAL. El objetivo primario fue la proporción acumulada de pacientes con fallo virológico definido como CVP ≥400 copias/mL hasta la semana 24. Se observó fallo virológico en un paciente por rama. La conclusión de los autores fue que el cambio a RAL es eficaz y bien tolerado a las 24 semanas y ofrece la ventaja de la simplicidad y la tolerabilidad en relación a ENF. También se ha explorado con éxito la sustitución de ENF por otros fármacos como ETR⁴⁰¹.

La simplificación de pautas con IP/r a RAL fue evaluada en los estudios SWITCHMRK 1 y 2⁴⁰² y en el SPIRAL⁴⁰³. En los estudios SWITCHMRK, dos ensayos clínicos paralelos, multicéntricos, aleatorizados a doble ciego, se incluyó a pacientes virológicamente controlados y estables con 2 ITIAN y LPV/r. No se excluyó a los pacientes que habían fracasado con otros regímenes terapéuticos, siempre que en el momento de la inclusión en el estudio presentaran una CVP inferior a 50 copias/mL desde al menos tres meses antes. Los pacientes se aleatorizaron 1:1 a mantener LPV/r o cambiar a RAL, con la misma base de ITIAN. Los objetivos primarios fueron: porcentaje de cambio en las cifras de lípidos en la semana 12, proporción de pacientes con CVP inferior a 50 copias/mL en la semana 24 (margen prefijado de no-inferioridad: -12%) y frecuencia de acontecimientos adversos a las 24 semanas. Se aleatorizaron 707 pacientes y se trató a 702 (350 con RAL y 352 con LPV/r). El cambio a RAL fue bien tolerado y se asoció con una mejoría significativa de los parámetros lipídicos, pero no demostró la no-inferioridad desde el punto de vista virológico en la semana 24, pues 293 de 347 pa-

cientes (84,4%) frente a 319 de 352 (90,6%) tuvieron una CVP inferior a 50 copias/mL en los grupos de RAL y LPV/r, respectivamente; la diferencia observada entre los dos tratamientos en el análisis por ITT fue de -6,2 % (IC 95%: -11,2 a -1,3). Probablemente estos resultados fueron debidos a los criterios de inclusión de los pacientes y más en concreto al hecho de permitir la entrada en el estudio de pacientes con fracaso virológico previo cuando se plantea sustituir LPV/r por RAL, que tienen distinta barrera genética. La enseñanza de este estudio es que se debe elegir muy bien a los pacientes cuyo tratamiento se simplifica y la estrategia de simplificación a seguir.

En el estudio SPIRAL⁴⁰³ los resultados fueron muy distintos. En este caso se trataba de un ensayo clínico abierto, multicéntrico, de no-inferioridad (con un límite inferior del IC 95% de -12,5%), de 48 semanas de seguimiento, en el que se incluyó a 273 pacientes en tratamiento con un régimen basado en IP/r, con CVP inferior a 50 copias/mL durante al menos 6 meses, a los que se aleatorizó 1:1 a seguir con el mismo tratamiento o cambiar el IP/r a RAL. El objetivo primario fue la proporción de pacientes sin fallo virológico a las 48 semanas. En este caso sí que se cumplió el criterio de no-inferioridad, pues a las 48 semanas el 89,2% de pacientes con RAL y el 86,6% de pacientes con IP/r no habían experimentado fracaso virológico (diferencia: 2,6%; IC 95%: -5,2 a 10,6). Además el cambio a RAL se asoció con una mejoría significativa del perfil lipídico y de diferentes biomarcadores asociados con arteriosclerosis (inflamación, resistencia insulínica e hipercoagulabilidad)⁴⁰⁴⁻⁴⁰⁶. La diferencia entre los resultados de ambos estudios se ha explicado por el diseño y especialmente por la duración de la supresión virológica previa al cambio de tratamiento, que fue mayor en el SPIRAL.

También se ha explorado la posibilidad de utilizar RAL una vez al día como simplificación. Esta estrategia se ha evaluado en el estudio ODIS⁴⁰⁷, un ensayo clínico en el que se incluyó a 222 pacientes en tratamiento con un IP/r+TDF/FTC o ABC/3TC y una CVP inferior 50 copias/mL durante al menos las 24 semanas precedentes, a los que se aleatorizó 1:2 a sustituir el IP/r por RAL 400 mg BID (n=73) o por RAL 800 mg QD (n=149). Además, a la semana 12, si no existían diferencias entre las dos ramas en cuanto a eficacia, los pacientes incluidos en la rama BID podían ser de nuevo aleatorizados a seguir BID (n=35) o a pasar a QD (n=38). Los datos publicados corresponden a las 24 semanas. Un total de 13 pacientes (5,9%) desarrollaron fracaso virológico, 12 (6,4%) en el grupo QD y 1 (2,9%) en BID. La frecuencia de fracaso virológico en pacientes con resistencia a los ITIAN previos fue del 16,2% (12/74) mientras que fue inferior al 1% (1/148) en el resto (p <0,001). <mark>La frecuencia de fracaso virológico fue particularmente elevada en</mark> pacientes con mutaciones de resistencia a los ITIAN. Estos resultados ponen de nuevo de manifiesto la importancia de elegir adecuadamente los pacientes a los que se va a simplificar. Este mismo análisis es discutido en una editorial que acompaña la publicación del estudio SWITCHMRK⁴⁰⁸.

Recomendaciones

Es importante seleccionar muy bien los pacientes a los que se desea simplificar el TAR y la estrategia a seguir. La simplificación no se puede realizar a costa de la pérdida de eficacia virológica. Sólo se puede plantear una simplificación si no ha existido fracaso previo y si se utilizan fármacos plenamente activos para mantener el éxito virológico (A-I)

- Los pacientes con supresión vírica prolongada (≥6 meses) y buena adherencia (>90%) son los mejores candidatos a simplificación (B-II)
- No se recomienda simplificar de un IP/r a ABC si el paciente ha recibido previamente tratamientos subóptimos con ITIAN (A-I)
- Está contraindicada la simplificación a ABC asociado a TDF y 3TC o a TDF y ddl (A-II)
- En pacientes con riesgo cardiovascular elevado la simplificación a NVP o RAL puede añadir ventajas metabólicas (B-I)
- En pacientes en su primera pauta terapéutica con IP/r y con CVP indetectable se puede sustituir el IP/r por EFV, RPV, NVP o ATV (AI) y simplificar a pautas QD como EFV+TDF+3TC (o FTC), RPV+TDF+FTC, EFV+ddI+3TC (o FTC), ATV/r+TDF/FTC o ATV+ABC/3TC (A-I)
- El cambio a un régimen de un único comprimido añade ventajas adicionales de adherencia (A-I)
- La sustitución de ENF por RAL en pacientes suprimidos virológicamente se ha demostrado eficaz y segura (A-I)
- Las monoterapias con DRV/r (QD) o LPV/r (BID) deben usarse de forma excepcional y siempre y cuando el paciente presente toxicidad o intolerancia a los ITIAN. Además, esta estrategia debe restringirse a pacientes que cumplan todas las siguientes condiciones: a) ausencia de fracaso previo con IP; b) CVP <50 copias/mL durante al menos 6 meses; y c) haber demostrado una excelente adherencia (C-I). Los pacientes con una cifra nadir de linfocitos CD4⁺ inferior a 100 células/μL pueden tener un mayor riesgo de fracaso con esta pauta terapéutica, por lo que su indicación en este contexto debe valorarse con especial cuidado.
- Otras posibles simplificaciones deben ser realizadas en el seno de ensayos clínicos, no en la práctica clínica (A-III)

5.2. FRACASO DEL TRATAMIENTO ANTIRRETROVIRAL

El fracaso del TAR se puede definir desde dos puntos de vista: virológico e inmunológico. Se entiende por fracaso inmunológico la incapacidad de conseguir y mantener una cifra adecuada de linfocitos CD4⁺ a pesar de haber conseguido la supresión virológica duradera en plasma (CVP inferior a 50 copias/mL de VIH-1). Esta situación se conoce asimismo como respuesta inmunológica discordante. En estos casos no existe evidencia que demuestre que un cambio de régimen de TAR consiga una mayor recuperación de linfocitos CD4⁺, por lo que no se recomienda cambiar el TAR, salvo cuando incluya combinaciones que se asocian específicamente a un descenso de linfocitos CD4⁺ (por ejemplo: ZDV, ZDV/3TC, o TDF+ddI).

En este capítulo se analiza sólo el fracaso virológico. Se define la supresión virológica como el mantenimiento de la CVP por debajo de 50 copias/mL, aunque algunas técni-

cas tienen establecido el umbral de detección en 20 copias/mL. Se define fracaso virológico, por tanto, como dos CVP confirmadas superiores a 50 copias/mL (a partir de las 24 semanas del inicio del TAR).

Existe cierta incertidumbre sobre el significado de valores de CVP comprendidos entre 50 y 200 copias/mL. Por debajo de 200 copias/mL la tasa de éxito de la amplificación de los estudios de resistencia o de tropismo es <mark>sensiblemente</mark> menor. La concentración de las muestras mediante tres ciclos de ultracentrifugación y la utilización de un mayor volumen de partida (3 mL) han demostrado que se puede conseguir una elevada tasa de resultados válidos en los genotipos, por lo cual se recomienda hacer ambas cosas <mark>en estos casos⁴⁰⁹. Por otra parte, con considerable frecuencia se obtienen resultados</mark> detectables de CVP cerca del límite de detección de la técnica y por debajo de 200 copias/mL en sujetos que posteriormente mantienen nuevamente la supresión virológica sin cambio alguno en su TAR⁴¹⁰. Por todo ello, algunos autores han propuesto definir fracaso virológico como dos valores consecutivos de CVP superior a 200 copias/mL⁴. De hecho, un análisis retrospectivo de dos estudios de los ACTG realizados en 1.479 sujetos sin TAR previo concluyó que situar el umbral de fracaso virológico en más de 200 en lugar de en más 50 copias/mL era más útil en la práctica, puesto que la mayoría de sujetos con CVP comprendida entre 50 y 200 copias/mL quedaron nuevamente indetectables sin cambio alguno en su TAR y no se consiguieron datos válidos de sus genotipos en la mayoría de ellos⁴¹¹.

Por el contrario, un estudio reciente ha demostrado una mayor probabilidad de fracaso en aquellos pacientes con CVP muy baja, pero que no consiguen la indetectabilidad total 412 . Así, tras 12 meses de seguimiento, el 34,2% y el 13,0% de los pacientes con CVP entre 40 y 49 copias/mL en el momento basal, frente al 11,3% y 3,8% con CVP entre 0 y 40 copias/mL, y el 7,0% y 1,2% con CVP indetectable, presentaban fracaso virológico confirmado con más de 50 o más de 400 copias/mL, respectivamente (ambos: p <0,0001; log-rank test). En el análisis multivariante, la CVP en T0 entre 40-49 copias/ml (HR: 4,67; IC 95%: 2,91 a 7; p <0,0001) y la CVP entre 0-40 copias/mL (HR: 1,97; IC 95%: 1,25 a 3,11; p <0,0001) fueron predictores independientes de tener CVP detectable (>50 copias/mL) a los 12 meses de seguimiento.

Los valores de CVP entre 200 y 1.000 copias/mL se asocian universalmente en todos los estudios a selección de mutaciones de resistencia y deben considerarse siempre como fracasos virológicos⁴¹³. En todos los estudios de registro de TAR se genotipan sistemáticamente todas las muestras con CVP superior a 400 copias/mL. En la práctica clínica es deseable genotipar todas las muestras con CVP confirmada superior a 50 copias/mL, especialmente si es mayor de 200 copias/mL.

La incidencia de fracaso virológico, sus causas y el perfil de mutaciones de resistencia seleccionadas han cambiado radicalmente desde el inicio del TAR de forma paralela a la mejoría paulatina en la eficacia de los regímenes utilizados. Tras la introducción de los ITINN y los IP/r, y la sustitución de los ITIAN timidínicos por TDF o ABC coformulados se ha reducido significativamente no solo la incidencia del fracaso virológico al primer TAR sino también la frecuencia y el tipo de mutaciones emergentes. Se ha observado una reducción de las TAMs frente a ITIAN y de las mutaciones en el gen de la proteasa⁸⁷. La toxicidad fue inicialmente la causa más frecuente de fracaso terapéutico por retirada del tratamiento. Con los regímenes usados actualmente se ha reducido drásticamente la frecuencia de fracaso terapéutico (*endpoint* compuesto). Las tasas de

fracaso virológico (definido como CVP confirmada superior a 50 copias/mL hasta la semana 48) en primeras líneas de TAR son inferiores al 15% (6-14,5%) con las pautas actualmente consideradas como preferentes (ITIAN no timidínicos, coformulados, e ITINN, IP/r o RAL), aunque al menos en una cuarta parte de ellos no se consigue amplificar el estudio genotípico de resistencias por tratarse de CVP bajas (<500 copias/mL)^{171,251,277,303,308,414}.

Los sucesivos fracasos terapéuticos con acumulación de mutaciones de resistencia frente a las diferentes familias de FAR limitan las posibilidades de éxito del TAR, obligan al uso de regímenes más caros y complejos, y se asocian con mayor incidencia de progresión a SIDA y muerte.

Factores que influyen en el fracaso terapéutico

Estos factores pueden clasificarse en tres grupos, según dependan del paciente, de los fármacos o del virus.

Entre los primeros, el más importante es la adherencia al tratamiento, que es el mejor predictor de respuesta virológica. Cuando se detecta un fracaso virológico sin mutaciones de resistencia debe valorarse la falta de adherencia como la causa más probable. La ausencia de mutaciones mayoritarias en el genotipo poblacional estándar (genotipo Sanger) en este escenario no excluye que puedan existir en poblaciones virales minoritarias, no detectables por las pruebas de resistencia genotípicas convencionales, especialmente frente a FAR de baja barrera genética (3TC, FTC, ITINN de primera generación, e inhibidores de la integrasa). Asimismo, la aparición súbita de una CVP elevada (con valores similares a los del *setpoint* previo al inicio del TAR) en un sujeto tratado, sugiere el abandono el tratamiento por parte del paciente.

Entre los factores que dependen del fármaco se considera en primer lugar la potencia del régimen terapéutico, la falta de concentraciones adecuadas en sangre, por malabsorción o interacciones medicamentosas, y los errores de dosificación.

Entre los factores que dependen del VIH-1, el más importante es la resistencia a los FAR, que resulta de la interacción de la capacidad replicativa y diversidad del virus y la presión farmacológica. La resistencia a los FAR puede ser transmitida a otras personas y es variable según sea el área o colectivo de pacientes estudiados y el método empleado. Las cifras de infección reciente por virus resistentes varían entre un 7,7% y un 19,2%. Se estima que en nuestro medio el 9-12 % las infecciones recientes por VIH-1 tienen mutaciones de resistencia⁴¹⁵. De hecho, la monitorización de las mutaciones M184V, K65R y K103N, que se asocian a 3TC/FTC, TDF y EFV, han demostrado una reducción significativa en años recientes, a pesar del incremento en el uso de estos fármacos⁴¹⁶, la cual puede deberse a la administración de los mismos en forma de comprimido único, como sugiere la mayor prevalencia de tales mutaciones en pacientes que toman aquéllos por separado que en los que los toman coformulados⁴¹⁷.

Las mutaciones que confieren resistencia a ITINN, algunas de las que confieren resistencia a los inhibidores de la integrasa (muy infrecuentes en la actualidad) o determinadas mutaciones frente a ITIAN, comprometen la eficacia de los tratamientos en sujetos que no han recibido TAR previo. El uso de técnicas ultrasensibles que permiten detectar mutaciones de resistencia en variantes virales minoritarias, no detectables con las técnicas convencionales (véase más adelante), ha demostrado asociarse a una

mayor tasa de fracaso virológico sólo en aquellos sujetos con mutaciones minoritarias frente a ITINN que inician pautas basadas en ITINN de primera generación (NVP o EFV [OR: 3.0])¹⁰⁰, aunque probablemente se trate de un efecto de familia.

Dos estudios de cohortes han coincidido al describir que si se logra una CVP inferior a 50 copias/mL en el primer TAR, el rebrote de la CVP suele asociarse a mal cumplimiento o toxicidad y solo en muy escasas ocasiones puede atribuirse a falta de potencia, interacciones medicamentosas o problemas de absorción.

El fenómeno de la inmigración obliga a valorar asimismo el origen de los pacientes con infección por VIH-1 en situación de fracaso virológico. El uso de NVP en dosis única como profilaxis de transmisión materno-infantil, el TAR poco potente, la escasa monitorización o problemas de distribución y almacenaje de los FAR, etc., explican el aumento de incidencia de fracaso virológico en determinados países con escasos recursos económicos. Una elevada proporción de estos pacientes son portadores de VIH-1 de subtipos no-B y, por tanto, con patrones de mutaciones de resistencia potencialmente distintos. Existe una mayor predisposición a seleccionar las mutaciones K65R, K70E, K103N, V106M, y Y181C en el subtipo C y en general hay menos experiencia con FAR en subtipos no B⁴¹⁸. La prevalencia de subtipos no-B se está incrementando en España, alcanzando un 15% entre los seroconvertores recientes (a partir de 2005)⁴¹⁵. La introducción de subtipos no-B en España se ha asociado claramente con la inmigración⁸⁷. Por otra parte, algunos pacientes de origen subsahariano padecen infección por VIH-2 o infección dual por VIH-1 y VIH-2. El VIH-2 desarrolla patrones diferentes de mutaciones tras exposición a ITIAN y es intrínsecamente resistente a ITINN y ENF.

Criterios de cambio de TAR por fracaso virológico

Ante un fracaso virológico es recomendable repetir la CVP para confirmarlo y cambiar el TAR lo antes posible para evitar el acúmulo de mutaciones y la elevación de la CVP, facilitando de este modo la respuesta al nuevo tratamiento.

Los "blips" son valores aislados de CVP cerca del umbral de detección (50 copias/mL, y especialmente 20 copias/mL) en pacientes en TAR y con CVP suprimida, que vuelve a reportarse como suprimido en el control posterior sin cambio del TAR. Habitualmente son valores inferiores a 200 copias/mL. En la mayoría de los estudios los "blips" aislados no se asocian con un mayor riesgo de fracaso, pero sí con una mayor frecuencia posterior de "blips". Sin embargo, si se presentan en más de una ocasión sí se relacionan con un incremento en el riesgo de fracaso virológico e incluso se ha observado evolución genética y selección de resistencias durante los "blips" frecuentes. En un paciente con "blips" frecuentes debe evaluarse la potencia del TAR y especialmente la adherencia al mismo así como asegurarse que el régimen de TAR administrado tenga una elevada barrera genética frente al desarrollo de resistencia.

Objetivo del tratamiento tras un fracaso virológico

El objetivo terapéutico es conseguir de nuevo la supresión viral mantenida (<50 copias/mL). Para ello, se debe instaurar un nuevo régimen con tres FAR plenamente activos siempre que esto sea posible, o sus equivalentes en caso de FAR con actividad intermedia³. No hay ningún dato respecto a pautas de sólo dos FAR activos en TAR de

rescate, a pesar de que potencialmente podrían ser suficientes en algunos escenarios de rescate precoz con escasa resistencia, baja CVP y cifra elevada de linfocitos CD4⁺, y siempre que incluyan un IP/r activo⁴¹⁹. Cuando no pueda disponerse de tres FAR activos se contará con otros que conserven la mayor actividad residual (estudio de resistencias) y tengan la mejor tolerabilidad posible.

No se debe retrasar el cambio de TAR. A partir de datos de los estudios TORO ya se establecieron cuatro factores asociados a la eficacia virológica del TAR de rescate: a) recuento de linfocitos CD4 ≥100 células/µL (OR: 2,1; IC 95%: 1,5-3,1); b) CVP basal inferior a 5 log₁₀ (OR: 1,8; IC 95%: 1,2-2,6); c) haber recibido ≤10 FAR los individuos multitratados (OR: 2,4; IC 95%: 1,6-3,4); y d) disponer de dos o más FAR activos en el nuevo TAR (OR: 2,3; IC 95%: 1,6-3,3). En todos los estudios de rescate se han identificado como factores de mala respuesta una CVP elevada (habitualmente definida como >100.000 copias/mL) y cifras bajas de linfocitos CD4+⁴²⁰. Estos sujetos, debido a su mayor riesgo de fracaso virológico, deben tratarse con pautas especialmente validadas y con la mayor potencia antirretroviral posible.

Para conseguir el objetivo de CVP indetectable pueden ser útiles algunas estrategias, tales como:

- Facilitar la adherencia al TAR. La mala adherencia suele ser la causa de la mayoría de los fracasos virológicos. Antes de iniciar el TAR de rescate hay que identificar las causas de mala adherencia y se deben tomar medidas para corregirlas, pues en caso contrario se reproducirán tras el nuevo TAR de rescate. El nuevo régimen de TAR debe ser lo más cómodo de tomar y lo mejor tolerado posible. En algunos grupos de pacientes con mala adherencia al TAR se debe procurar que el tratamiento sea directamente observado o al menos supervisado con frecuencia. No hay datos que confirmen que la adherencia sea mejor con pautas de rescate QD que con pautas BID, por lo que nunca debe escogerse una pauta QD sólo para facilitar la adherencia, si no tiene la eficacia óptima para esa situación de rescate.
- Pruebas de resistencia. La realización de una prueba de resistencia genotípica o fenotípica en cada fracaso optimiza el nuevo tratamiento, aumenta su eficacia y mejora el pronóstico de los pacientes 421,422. Los resultados más útiles se obtienen si esta prueba se realiza mientras el paciente está tomando el régimen de TAR que ha fracasado. En España se usa habitualmente el genotipo. En su interpretación debe tenerse en cuenta que las mutaciones detectadas están presentes con seguridad. Sin embargo, las no detectadas pueden encontrarse en poblaciones minoritarias (menores al 15-20% de la población viral total) y pueden no detectarse en el genotipo poblacional. Cuanto más tiempo transcurra entre la suspensión del TAR y la realización del genotipo, más fácil es que desaparezcan las mutaciones, especialmente las que causan mayor deterioro en la fitness o capacidad replicativa viral, que desaparecen con mayor rapidez al ceder la presión farmacológica que las mantenía. En aquellos casos en los que se disponga de estudios genotípicos previos es muy importante valorar la suma de todos los genotipos (genotipo acumulado), pues ello ha demostrado que mejora la eficacia en la elección del nuevo régimen antirretroviral respecto a la valoración aislada del genotipo del último fracaso^{87,423}. Existen ciertas discordancias menores, según sea el sistema con el que se realiza la interpretación de las resistencias. La concordancia mayor se observa en los ITINN (93%) y en los IP (84%); en cambio, para los ITIAN sólo es del 76%. Aunque es pre-

ferible disponer de una muestra con una CVP >1.000 copias/mL para realizar el genotipado de VIH-1, la rentabilidad de su realización por debajo de este valor sigue siendo elevada, por lo que en ningún caso debe dejar de realizarse el estudio de resistencias solo por este motivo debido a su mayor riesgo de fracaso virológico⁴²⁴.

- Tropismo. Debe determinarse sistemáticamente el tropismo del VIH-1 en cada fracaso virológico, exceptuando los casos en que previamente ya se haya documentado la existencia de tropismo no-R5. La determinación debe realizarse simultáneamente al genotipo estándar, y su resultado debe ser evaluado conjuntamente con el del genotipo de la transcriptasa inversa, proteasa, e integrasa, si procede.
- Revisar el historial de tratamiento del paciente. Identificar FAR que no fueron
 tolerados en el pasado, así como identificar fracasos virológicos previos durante el
 tratamiento con pautas de baja barrera genética. Especialmente en aquellos episodios en que no se realizara estudio genotípico de resistencias próximo a la fecha de
 fracaso, debe sospecharse la presencia de mutaciones que confieran resistencia
 frente a 3TC/FTC o ITINN de primera generación, que en genotipos posteriores
 (años) pueden haber desaparecido.
- Índice ponderado (score) de resistencia genotípica para cada fármaco. La interpretación de las pruebas de resistencia genotípicas depende del número, tipo y patrón de mutaciones seleccionadas. En la actualidad se han desarrollado índices ponderados (scores) que definen la sensibilidad a determinados FAR (ATV/r, SQV/r, LPV/r, TPV/r, y ETR) basados en datos extraídos de estudios realizados en la vida real. Algunos algoritmos de interpretación, como el español de la RIS (véase más abajo) o el de Stanford (disponible en http://hivdb.stanford.edu/), ponderan el peso de las mutaciones para todos los FAR, incluidos los inhibidores de la integrasa. Estos scores marcan el "peso" o valor de cada una de las mutaciones según el grado de resistencia (valores negativos) o de hipersusceptibilidad (valores positivos), siendo de gran utilidad en la valoración de la actividad de los FAR que se plantean incluir en el TAR de rescate 425. Los scores puntúan cada una de las mutaciones y finalmente se obtiene un resultado de mayor o menor susceptibilidad al fármaco.
- Cociente inhibitorio genotípico. El cociente inhibitorio genotípico (CIG) es la razón entre las concentraciones plasmáticas del fármaco y el número de mutaciones relevantes en el gen de la proteasa. Se considera un marcador predictivo de respuesta a un IP, a pesar de que en él todas las mutaciones cuentan por igual. Otra aproximación es el cociente inhibitorio normalizado que calcula la relación entre las concentraciones mínimas plasmáticas del fármaco y el número de veces por encima de la IC₅₀ obtenido en el fenotipo viral. A pesar de su interesante valor teórico, no se ha establecido su uso en la práctica clínica.
- Pruebas de resistencia genotípicas con mayor sensibilidad: La PCR alelo específica, y diferentes plataformas de ultradeep sequencing- 454 Roche, myseq Illumina- se encuentran en un grado avanzado de desarrollo y son metodologías que permiten encontrar variantes virales minoritarias (o en baja cantidad, en porcentajes de la población viral del 0,1-15%) con mutaciones de resistencia, que no son detectadas mediante el genotipo estándar o poblacional 100. Las técnicas basadas en PCR tienen la mayor sensibilidad teórica para detectar variantes minoritarias puntuales, pero presentan bastantes limitaciones técnicas. Las técnicas ultrasensibles basadas en la

ultrasecuenciación (tecnología 454) aumentan la sensibilidad de detección de mutaciones minoritarias y, al disponer de secuencias completas independientes, permiten establecer nítidamente su asociación, realizar estudios filogenéticos más completos y estudiar la evolución en el tiempo de las diferentes poblaciones. Está bien establecido actualmente que la existencia de mutaciones minoritarias condiciona la respuesta a un TAR basado en ITINN de primera generación (NVP o EFV). Esto es debido a que la presencia de una sola mutación produce resistencia de alto nivel al fármaco. Es la única situación en que hasta ahora se ha podido demostrar el impacto clínico de las mutaciones minoritarias 94,95. La presencia de variantes con K103N en un nivel superior a 2.000 copias/mL o >2% de la población viral se ha correlacionado con mayores tasas (OR 47.4) de fracaso virológico a EFV⁴²⁶. Es de esperar que acabe confirmándose asimismo el impacto de las mutaciones minoritarias frente a otros FAR de baja barrera genética, especialmente los inhibidores de la integrasa (RAL) y 3TC o FTC. Asimismo, es posible que sean determinantes respecto a FAR con mayor barrera genética, pero en aquellas situaciones en que, existiendo ya mutaciones que comporten una resistencia de nivel bajo/intermedio, la detección de otras mutaciones (aunque por debajo del 15-20%) pueda comportar un incremento significativo de la resistencia, por ejemplo frente a ETR. Contrariamente, la presencia de mutaciones minoritarias no tiene impacto en la respuesta a pautas triples basadas en IP/r en pacientes sin tratamiento previo 427,428.

Monitorización plasmática de las concentraciones de fármacos. Es poco útil en la actualidad en la optimización de un TAR de rescate debido a la existencia de datos clínicos muy sólidos con las pautas actuales de rescate y a la variabilidad interindividual de los niveles plasmáticos de los FAR. En casos seleccionados, puede ayudar a optimizar el TAR, mejorando así su eficacia⁴²⁹ (véase el apartado de farmacocinética).

5.2.1. Cambio de TAR tras fracaso precoz

Los ensayos clínicos aleatorizados que han evaluado la eficacia de diferentes combinaciones de FAR en tratamientos de segunda línea son escasos. El objetivo terapéutico es la resupresión de la CVP (<50 copias/mL). Los cambios precoces evitan el acúmulo de mutaciones y permiten secuenciar FAR, incluso dentro de cada familia. Con los FAR actualmente disponibles resulta sencillo diseñar un TAR de rescate precoz, aunque siempre se debe contar con una prueba de resistencias y tropismo del VIH-1.

En el caso de pacientes que iniciaran el tratamiento con tres ITIAN, las mutaciones más frecuentes son: la M184V/I con TAMs, si el esquema incluía ITIAN timidínicos, o con la K65R (TDF) o L74V y Y115F (ABC), si el TAR incluía ITIAN no timidínicos.

Si el fracaso es con una pauta con 2 ITIAN y 1 ITINN, una única mutación (por ejemplo: K103N, L100I, Y181C) es capaz de generar resistencia de alto nivel a EFV y NVP. El patrón de mutaciones es ligeramente distinto, según que la pauta incluyera NVP (Y181C, K103N, G190A, K101E, A98G) o EFV (K103N, L100I, Y188L, G190A, K101E). El fracaso virológico se acompaña habitualmente de otras mutaciones a ITIAN (M184V, L74V o K65R) con una incidencia superior a lo que ocurre cuando el primer régimen está compuesto por 2 ITIAN y 1 IP/r, que protege mejor la actividad de los ITIAN. Un cambio precoz evita la acumulación de mutaciones de resistencia que comprometería la efica-

cia de los ITINN de nueva generación. En este escenario la utilización de ETR puede estar comprometida según sea el patrón de mutaciones seleccionado (véase más adelante). Aunque ha existido debate acerca de si los fracasos a NVP seleccionan mayor resistencia frente a ETR que los fracasos a EFV, debido a que el patrón de mutaciones que finalmente se selecciona es complejo, en el análisis con mayor poder estadístico realizado sobre un estudio aleatorizado (estudios DUET, con 599 pacientes tratados) los fracasos previos a NVP no se asociaron con una peor respuesta a ETR que los fracasos a EFV, aunque su impacto pudo quedar diluido por la actividad de DRV/r⁴²⁰.

El uso de IP/r en el primer TAR ha reducido significativamente el número de fracasos virológicos y la selección de mutaciones frente a los IP y a los FAR acompañantes. Todos los IP/r tienen una elevada barrera genética y, de hecho, sólo excepcionalmente aparecen mutaciones primarias o secundarias frente al IP en un primer fracaso virológico, aunque nunca condicionan resistencia fenotípica al IP. El desarrollo de resistencias en los IP es un proceso gradual, que requiere el acúmulo de varias mutaciones en el gen de la proteasa. Existen mutaciones seleccionadas específicamente por un IP (no potenciado) que no presentan resistencia cruzada con otros IP. Se consideran mutaciones específicas o signature mutations: D30N (NFV), I47A y L76V (LPV), G48V (SQV), ISOL (ATV) o ISOV (FPV y DRV) y alguna de ellas puede, por el contrario, producir hipersusceptibilidad a otros IP: la I47A confiere elevada resistencia fenotípica a LPV (>100 veces), resistencia cruzada con FPV e hipersusceptibilidad a SQV; la I50L causa hipersusceptibilidad a todos los IP excepto a ATV, y la I50V causa resistencia a LPV, FPV y DRV e hipersusceptibilidad a TPV. Otras mutaciones, en cambio, causan resistencia cruzada a la mayoría de IP (154L, 184V). La continua aparición de nuevas mutaciones obliga a consultar las bases de datos específicas con información actualizada sobre patrones de resistencia y su significado clínico (Los Álamos, Universidad de Stanford o la Plataforma de Resistencias de la RIS). El rescate de un tratamiento a dos ITIAN más un IP/r debe realizarse con tres FAR activos que pueden incluir ITINN, ITIAN, IP/r y otros de las nuevas familias.

Con frecuencia, el fracaso virológico del primer TAR puede seleccionar mutaciones de resistencia (M184V, K65R, L74V, etc.) que comprometen la actividad de ABC y parcialmente, también TDF. Ello obligaba utilizar ITIAN timidínicos (AZT especialmente, o d4T) en los tratamientos de segunda línea, que se han asociado con toxicidad crónica y a menudo irreparable (toxicidad mitocondrial, lipoatrofia, resistencia insulínica y otras alteraciones metabólicas). Actualmente se puede evitar el uso de estos análogos timidínicos gracias a su sustitución por FAR de las nuevas familias.

Si se pretende utilizar un IP/r, DRV/r ha demostrado ser más eficaz que LPV/r en determinadas situaciones en este entorno de rescate "precoz" o con fracaso limitado a pautas previas (estudio TITAN).

TITAN

Es un ensayo en fase III, aleatorizado, que comparó la eficacia de DRV/r frente a LPV/r, ambos con un tratamiento optimizado, en pacientes en fracaso virológico pero con menor número de tratamientos previos que en los estudios POWER. Los criterios de inclusión fueron: CVP >1.000 copias/mL, duración del TAR ≥12 semanas, y que nunca hubieran recibido LPV/r. Los datos deberían analizarse con criterios de no-inferioridad.

No obstante, con la finalidad de realizar una comparación entre ambas opciones terapéuticas, el diseño del estudio recogía a priori que se realizaría un estudio de superioridad por ITT en caso de cumplirse la no-inferioridad. Se incluyeron 595 pacientes. A las 48 semanas se observó (ITT) que el 77% de los pacientes tratados con DRV/r y el 67% del grupo LPV/r alcanzaron la variable principal del estudio: CVP inferior a 400 copias/mL (diferencia media estimada 10%; IC 95%: 2-17, p <0,001). DRV/r cumplió, por tanto, los criterios de superioridad frente a LPV/r. También se observaron diferencias con criterios de superioridad de DRV/r cuando se analizó la proporción con CVP inferior a 50 copias/mL (71% frente a 60%; diferencia media estimada: 11%; IC 95%: 3-19; p=0,005). En el análisis de subgrupos respecto a CVP inferior a 50 copias/mL, DRV/r resultó también superior a LPV/r si: la cifra basal de linfocitos CD4⁺ era baja, la CVP era >100.000 copias/mL, existía ≥1 mutación primaria a IP, fold-change de LPV/r >10 o fold-change a DRV <10. El fracaso virológico fue del 10% en el grupo de DRV/r y del 22% en el de LPV/r. En el análisis de las mutaciones de resistencia, sólo el 21% (6/28) de los pacientes que fracasaron con DRV/r desarrollaron mutaciones adicionales en el gen de la proteasa mientras que lo hizo el 36% (20/56) del grupo LPV/r. Las mutaciones frente a ITIAN fueron menos frecuentes en el grupo de DRV/r (14% frente a 27%). La seguridad y tolerancia de DRV/r fue comparable a LPV/r, con menos diarrea de grado 2-4 y mejor perfil lipídico.

ODIN

Es un estudio en fase IIIb, que ha comparado las dosis de DRV/r 800/100 QD frente a 600/100 BID junto a un régimen de rescate que sólo incluía ITIAN en pacientes con fracaso a un TAR y que no presentaran ninguna mutación frente a DRV (score de la IAS-USA). Incluyó 590 pacientes con CVP >1.000 copias/mL y un recuento de CD4 >50 células/μL. El objetivo primario fue la demostración de la no-inferioridad de la dosis QD de DRV/r en el porcentaje de pacientes con CVP <50 copias/mL (ITT-TLOVR, delta predefinido del 12%). A las 48 semanas el porcentaje fue del 72,1% para la dosis QD y del 70,9% para la dosis BID (diferencia 1,2%; IC 95%: -6,1% a 8,5%), cumpliendo, pues, el criterio de no-inferioridad. La evolución del recuento de linfocitos CD4 fue similar entre ambas ramas. Solo 1 de 294 pacientes de la rama QD desarrolló una mutación de resistencia a DRV durante el fracaso frente a ninguno en la rama BID. La tasa de efectos adversos de grados 3/4 se redujo a la mitad en el grupo QD (7,8% frente a 15,2%) y las concentraciones plasmáticas de colesterol total y LDL y de triglicéridos fueron significativamente menores en la rama QD. Debe destacarse que en realidad el 46% de los pacientes incluidos no había recibido ningún IP y que la mediana de mutaciones primarias para IP fue de 0, por lo que la aplicación de los resultados de este estudio en pacientes con varias mutaciones primarias en la proteasa es limitada¹⁰⁵. El estudio establece la no-inferioridad de la pauta de DRV/r QD en pacientes que no han recibido previamente IP y en aquellos que no presentan mutaciones primarias en la proteasa.

LPV/r en monoterapia

En el estudio HIV STAR 195 sujetos que habían presentado fracaso virológico a su primer TAR triple basado en ITINN de primera generación (86% NVP, 14% EFV) fueron aleatorizados a recibir un régimen de rescate con LPV/r en monoterapia (400/100 mg

BID) frente a LPV/r asociado a TDF+3TC⁴³⁰. Ninguno había sido previamente tratado con IP. El 82% habían seleccionado la mutación M184V frente a 3TC, el 6,7% la K65R, y el 29% ≥3 TAMs. A las 48 semanas las tasas de sujetos con CVP inferior a 50 copias/mL fueron del 61,2 y del 82,5%, respectivamente (OR de fracaso virológico para LPV/r monoterapia: 2,5; IC 95%: 1,3-4,9, p=0.01), por análisis ITT en el que las pérdidas o la adición de ITIAN se consideraron fracasos. Asimismo, el estudio ACTGA5230, a pesar de no disponer de una rama de control, ha confirmado estos resultados, puesto que en 122 sujetos con fracaso a un TAR de primera línea formado por 2 ITIAN y 1 ITINAN, su rescate con LPV/r en monoterapia se asoció a tasas bajas de indetectabilidad en la semana 24 (63% con CVP inferior a 50 copias/mL)⁴³¹.

Así pues, LPV/r en monoterapia no es un fármaco de elección en TAR de rescate en pacientes que fracasan a una primera línea de TAR triple basado en ITINN, a pesar de que no hayan recibido nunca IP.

Inhibidores de la transcriptasa inversa no nucleósidos de segunda generación

Etravirina

Etravirina es un ITINN de segunda generación activo frente a determinadas cepas de VIH-1 con mutaciones de resistencia frente a EFV y NVP.

Estudio TMC125-C227

Fue un estudio aleatorizado, abierto, en fase II, que evaluó la utilidad de ETR en TAR de rescate precoz. Se incluyeron 116 pacientes que nunca habían estado expuestos a IP pero que tenían mutaciones de resistencia a ITINN por fracaso de un régimen de TAR previo con ITINN, interrupción de un ITINN o profilaxis de transmisión vertical con ITINN. Se utilizó una dosis de ETR de 800 mg, BID, en una formulación anterior a la actual, que ofrecía una farmacocinética similar a la obtenida con los 200 mg BID actuales. Los pacientes fueron aleatorizados a recibir ETR o el IP seleccionado por el investigador (potenciado con RTV en el 96,5%, mayoritariamente [63%] con LPV/r), siempre junto a 2 ITIAN. Más del 90% de sujetos tenía alguna mutación frente a ITINN (K103N la más frecuente) y el 70% tenían ≥ 2 de ellas. Asimismo presentaban una media de 2 mutaciones frente a ITIAN y el 37% de los pacientes reciclaron al menos 1 ITIAN. El estudio se suspendió prematuramente al confirmarse una peor respuesta en la rama de ETR que en la que recibió IP. Este estudio es un ejemplo de la necesidad de utilizar más de dos FAR activos y evitar la monoterapia funcional en pacientes pretratados.

ETR no es una opción óptima en el rescate de pacientes que no han sido tratados con IP, que han fracasado a regímenes de TAR triple basados en ITINN de primera generación y han seleccionado resistencia frente a ITIAN y ITINN. Su utilidad en el rescate de primeras líneas de TAR triple basado en ITINN en que no se haya seleccionado resistencia significativa en el fracaso no ha sido evaluada.

Recomendaciones de cambio de TAR por fracaso virológico precoz

 El cambio del TAR por fracaso virológico debe efectuarse de modo precoz para evitar el acúmulo de mutaciones y facilitar la respuesta al nuevo tratamiento (A-II)

- El TAR nuevo debe contener tres fármacos totalmente activos según los estudios de resistencia o su equivalente si se incluyen fármacos parcialmente activos (A-I)
- Se debe conseguir CVP indetectable (<50 copias/mL) en cualquier tratamiento de rescate (A-I)
- Se debe realizar un estudio de resistencias y una prueba de tropismo para confeccionar el mejor régimen alternativo (A-II). La prueba de resistencias debe realizarse mientras el paciente está recibiendo el tratamiento fallido o lo más precozmente posible tras la suspensión. Si se dispone de pruebas genotípicas previas, debe tenerse siempre en cuenta el conjunto total de mutaciones detectadas (genotipo acumulado) (A-II)
- En la elección del nuevo TAR se deben analizar las causas que motivaron el fracaso (adherencia o interacciones medicamentosas), la historia farmacológica, las toxicidades que haya presentado y las mutaciones de resistencia previas (B-II)
- En fracasos a una primera línea de TAR triple basada en ITINN de primera generación, el TAR de rescate basado en etravirina es inferior al basado en un IP/r, por lo que etravirina no constituye una elección preferente en este contexto (A-I).
- DRV/r (600/100 mg BID) ha demostrado superioridad frente a LPV/r BID como IP/r de elección en tratamiento de rescate precoz, siendo el fármaco de elección. Los estudios tienen suficiente poder estadístico para confirmar esta superioridad si existen al menos 1 mutación primaria en la proteasa, pero no si no existe ninguna (A-I). Puede utilizarse la dosificación 800/100 mg QD en sujetos que no han recibido previamente IPs, y/o que habiéndolos recibido no presenten mutaciones para DRV ni mutaciones primarias en la proteasa (A-I).
- Deben evitarse los análogos de timidina en el tratamiento de rescate si existen otras alternativas (A-I)

5.2.2. Cambio de TAR en el fracaso avanzado (TAR de rescate)

El tratamiento tras el fracaso virológico de al menos dos líneas de TAR se ha denominado terapia de rescate avanzado. En esta situación la mayoría de los enfermos han experimentado fracaso con las tres familias de FAR más utilizadas: ITIAN, ITINN e IP. Sin embargo, en los estudios genotípicos, todavía existen algunos FAR que conservan actividad moderada o elevada frente al VIH-1.

Existen numerosos ensayos clínicos que han comparado diferentes tratamientos de rescate. En todos ellos se han utilizado un IP/r, una pareja de ITIAN, y el fármaco nuevo en evaluación. Son estudios difícilmente comparables entre sí por la heterogeneidad de la población, tratamientos previos, criterios de eficacia, tiempo de seguimiento y tipo de terapia optimizada utilizada dependiendo de los fármacos disponibles comercialmente en la época de realización del estudio.

Tanto ENF, como TPV/r, DRV/r, ETR, MVC y RAL han demostrado superioridad frente a placebo en todos los parámetros de eficacia en sus respectivos estudios principales, siempre en combinación con el mejor tratamiento optimizado disponible en el momento de realización del estudio 432-438.

No existen estudios comparativos entre ellos en TAR de rescate.

Inhibidores de la proteasa potenciados

Lopinavir/r

La experiencia de LPV/r en terapia de rescate se ha obtenido de los ensayos clínicos realizados con el resto de IP/r que utilizaron LPV/r como IP comparador (véase más adelante). Tanto TPV/r como DRV/r han demostrado superioridad respecto a LPV/r en este escenario. LPV/r no es un fármaco de elección en TAR de rescate avanzado.

Fosamprenavir

CONTEXT

CONTEXT es un ensayo clínico aleatorizado y abierto de fase III que comparó la eficacia de FPV/r frente a LPV/r, ambos con 2 ITIAN en pacientes tratados previamente con 1 ó 2 IP. Se incluyeron 300 pacientes, que fueron aleatorizados a recibir FPV/r (1400/200 mg, QD), FPV/r (700/100 mg, BID) o LPV/r (400/100 mg, BID). Los resultados mostraron que FPV/r QD era inferior a LPV/r y no se pudo demostrar la no-inferioridad de FPV/r BID frente a LPV/r. La proporción de pacientes con CVP inferior a 400 y a 50 copias/mL a las 48 semanas fue 50% y 37%, respectivamente, para FPV/r QD, 58% y 46% para FPV/r BID y 61% y 50% para LPV/r. FPV/r no es un fármaco de elección en TAR de rescate.

Saquinavir

MaxCmin2

Evaluó la eficacia de SQV/r (1000/100mg, BID) frente a LPV/r (400/100 mg, BID) en un estudio abierto y aleatorizado que incluyó 339 pacientes. A las 48 semanas (ITT, interrupción = fracaso) el 25% de los tratados con LPV/r y el 39% de los tratados con SQV/r presentaron fracaso terapéutico definido como CVP ≥200 copias/mL en cualquier momento del estudio (p=0,005). El tiempo hasta el fracaso fue similar con ambas pautas (p=0,27). En este estudio se utilizaron cápsulas duras con 200 mg de SQV y la adherencia, los efectos adversos y el diseño abierto probablemente resultaron negativos para el brazo con SQV/r. SQV/r no es un fármaco de elección en TAR de rescate.

Atazanavir

AI424 045

El estudio AI424 045 comparó ATV/r, frente a ATV más SQV y frente a LPV/r en pacientes en fracaso virológico. Se requería una CVP >1.000 copias/mL, que hubieran realizado al menos dos regímenes previos y experiencia con algún FAR de las tres clases (ITIAN, ITINN e IP). Todos los pacientes recibieron además TDF y otro ITIAN. A la semana 24 se demostró que la eficacia del brazo que combinaba ATV y SQV era inferior a LPV/r, por lo que se dio opción de cambiar el tratamiento. Tanto a las 24 como 48 semanas, ATV/r resultó no-inferior a LPV/r respecto al criterio de valoración primario (reducción de CVP) y la consecución de CVP inferior a 50 ó 400 copias/mL. Sin embar-

go, la proporción de pacientes con CVP inferior a 50 copias fue del 38% en el grupo de ATV/r frente al 45% en el de LPV/r. A las 96 semanas el criterio de valoración primario demostró una eficacia similar de ATV/r (-2,29 log₁₀) y LPV/r (-2,08 log₁₀). En los pacientes en tratamiento, la proporción con CVP indetectable fue similar en ambos brazos, pero el estudio carece de poder estadístico para demostrar diferencias para este objetivo secundario. En un subestudio que analizó la respuesta virológica a las 48 semanas según la presencia de mutaciones en las posiciones D30, V32, M36, M46, I47, G48, I50, F53, I54, A71, G73, V77, V82, I84, N88 y L90, la respuesta fue similar si había ≤4 mutaciones. Sin embargo cuando el número de ellas era ≥5, ningún paciente (0/9) del grupo de ATV/r y 5/18 (28%) de los de LPV/r lograron la indetectabilidad. Por otra parte se identificaron mutaciones asociadas a resistencia a ambos fármacos. Las mutaciones en las posiciones M46, I54, I84, o L90 reducen la eficacia de ATV/r a menos de un 30%, al igual que las posiciones M46, I54 o I84 en LPV/r. ATV/r no es un fármaco de elección en TAR de rescate avanzado.

Tipranavir

RESIST 1 y 2

Los RESIST son estudios en fase III en los que se comparó TPV/r con otro IP/r elegido por cada investigador. Los criterios de inclusión exigían recibir una pauta con IP, estar en situación de fracaso virológico (CVP >1.000 copias/mL) y haber en el estudio genotípico ≥ 1 mutaciones primarias en los codones D30, M46, G48, I50, V82, I84 o L90, y ≤ 2 en los codones L33, V82, I84 ó L90. Los pacientes fueron aleatorizados a TPV/r o un IP/r comparador (IP/rC). A todos los pacientes se les administró un tratamiento optimizado que sólo podía incluir ENF de entre los nuevos fármacos. Los pacientes partían de CVP elevadas (mediana de 4,8 log₁₀ copias/mL) y CD4 bajos (mediana <200 células/ μ L). En el RESIST-1 la mayoría de los pacientes del IP/rC recibieron LPV/r (61%), mientras que en el RESIST-2 los más usados fueron APV/r (40%) y LPV/r (38%). ENF se indicó en el 36% de los pacientes del RESIST-1 y en el 12% de los del RESIST-2 (había pacientes tratados previamente con este fármaco).

Los resultados conjuntos de ambos estudios a las 48 semanas mostraron una proporción de pacientes con CVP inferior a 50 copias/mL del 22,8% y 10,2% con TPV/r y con el IP/rC, respectivamente, demostrándose la superioridad de TPV/r. El uso de ENF mejoró los resultados en ambos brazos, alcanzando el 52% (<400 copias/mL) y 35,8% (<50 copias/mL) en el brazo del TPV/r.

Mutaciones de resistencia a TPV

Se han identificado 19 mutaciones en 14 posiciones de aminoácidos (L10V, L24I, M36I, K43T, M46L, I47V, I50L/V, I54A/L/M/V, I54L, Q58E, T74P, L76V, V82L/T, N83D, y I84V) asociadas con resistencia a TPV. Según el "peso" que tengan en la respuesta al tratamiento con TPV (favorezcan la respuesta, tengan un impacto reducido o un gran impacto en la resistencia), se les ha dado un valor en el *score* actualizado (L10V: 1; L24I: -2; M36I: 2; K43T: 2; M46L: 1; I47V: 6; I50L/V: -4; I54A/M/V: 3; I54L: -7; Q58E: 5; T74P: 6; L76V: -2; V82L/T: 5; N83D: 4; y I84V: 2). En la elaboración de este *score* se ha tenido en cuenta la eficacia de la medicación que acompañaba a TPV. Cuando el score era ≤3 la respuesta en las semanas 8 y 48 es máxima y mínima si el *score* es >10. La propor-

ción de pacientes que respondían aumentaba cuanto mayor era la eficacia del régimen acompañante⁴³⁸. Su perfil de mutaciones que le confieren resistencia difiere ligeramente del de DRV, por lo que puede plantearse su uso en el rescate de determinados fracasos a DRV. No obstante, ambos comparten las mutaciones L33F, I47V, I54M, T74P, y I84V, por lo que es realmente infrecuente encontrarse con cepas en las que la diferencia de actividad estimada entre ambos sea clínicamente significativa.

Debido a que requiere una dosis mayor de RTV (200 mg BID), tiene un peor perfil de interacciones farmacocinéticas, posee una incidencia de trastornos lipídicos y digestivos menos favorable que DRV (a pesar de que no se han comparado directamente), y a que no hay experiencia de su utilización con MVC, ETR o RAL, su uso ha quedado restringido a aquellos casos en que su actividad residual estimada sea claramente superior a la de DRV/r BID, y no se requiera el uso de ETR (contraindicada con TPV/r).

Darunavir

Presenta una alta afinidad por la proteasa y es muy potente *in vitro* e *in vivo* frente a la cepa salvaje y las mutantes con resistencias a múltiples FAR incluyendo IP/r. Tiene un patrón relativamente específico de mutaciones en la proteasa, diferenciado en gran parte respecto al resto de IP, lo que le permite mantener actividad frente a gran parte de las mutaciones habitualmente seleccionadas por el resto de IP.

Es el IP/r de elección en un TAR de rescate avanzado, a dosis BID (600/100 mg BID) y debe incluirse siempre en el régimen de rescate, exceptuando casos de toxicidad intratable o resistencia adquirida de alto nivel al fármaco (muy infrecuente).

POWER 1 y 2

Los ensayos POWER compararon la eficacia y tolerancia de diferentes dosis de DRV/r (fase II) frente a un IP/r comparador (IP/rC) asociados ambos a una selección optimizada de otros FAR. Los pacientes incluidos tenía CVP >1.000 copias/mL, habían sido tratados previamente con FAR de las tres familias y tenían ≥1 mutaciones primarias a IP. La aleatorización se estratificó por el número de mutaciones, la CVP y el uso de ENF. A las 24 semanas, la dosis de DRV/r se unificó a 600/100 mg BID. En el análisis combinado de ambos estudios, a las 48 semanas, se incluyeron solamente los pacientes que recibieron la dosis de DRV/r de 600/100 mg BID desde el principio (n=131) frente al grupo control (n=120). La variable principal de eficacia fue la respuesta virológica confirmada (reducción de la CVP ≥1 log₁₀ copias/mL y tiempo hasta la pérdida de respuesta virológica, TLOVR). En cuanto a eficacia, la reducción de la CVP se alcanzó en el 61% de los pacientes del grupo de DRV/r y en el 15% del grupo comparador (diferencia 46%; IC 95%: 35 a 57; p<0,0001). La proporción con CVP inferior a 50 copias/mL (ITT-TLOVR) fue del 45% en los tratados con DRV/r y del 10% en el grupo control. La eficacia superior de DRV/r frente al IP/rC se mantuvo independientemente del uso de ENF, de la CVP basal, de las mutaciones primarias frente a IP o del número de FAR activos en la terapia optimizada. En la semana 96 el 39% de los tratados con DRV/r y el 9% del grupo comparador persistían con CVP inferior a 50 copias/mL (p<0,001, ITT-TLOVR).

El estudio POWER 3 incrementó los datos de eficacia, seguridad y tolerancia de DRV/r (dosis de 600/100 mg, BID), ratificando los resultados obtenidos en los estudios PO-

WER 1 y 2, y no dispone de rama control. En la semana 144, el 37% y el 9% de los pacientes respectivamente persistían con CVP < 50 copias/mL.

TITAN

Analizado anteriormente.

GRACE

El estudio GRACE (Gender, Race and Clinical Experience) es un estudio en fase IIIb, multicéntrico y abierto, que incluyó pacientes con experiencia previa a FAR y con una CVP ≥1.000 copias/mL. Todos los pacientes recibieron DRV/r 600/100mg BID con un tratamiento optimizado que incluía ITIAN y ITINN incluida ETR. El objetivo principal fue evaluar si había diferencias en función del sexo o la raza de los pacientes respecto a la eficacia (CVP <50 copias/mL) del tratamiento a las 48 semanas. Se incluyeron 429 pacientes, de los cuales el 67% eran mujeres y el 84% eran de raza negra. Un 32,8% de las mujeres suspendieron el TAR frente a un 23,2% de los hombres (p <0,05). En la semana 48, en el análisis en ITT-TLOVR, el 50,9% de las mujeres y el 58,5% de los hombres alcanzaron una CVP inferior a 50 copias/mL. Las diferencias en la respuesta virológica ajustada por la CVP y recuento de linfocitos CD4⁺ basales fue -9,6 (IC 95%: -19,85 a 0,68). En el análisis en ITT-TLOVR, en el que se censuraron los pacientes que fracasaron por causas diferentes al fracaso virológico, el 73% de las mujeres y el 73,5% de los hombres alcanzaron una CVP inferior a 50 copias/mL (diferencia: -3,9; IC 95%: -13,89 a 6,02). Los autores resaltaron la eficacia y seguridad de DRV/r en el TAR de rescate, tanto en hombres como en mujeres, aunque una elevada proporción de mujeres abandonan el TAR por razones distintas al fracaso virológico.

ODIN

Analizado anteriormente.

Mutaciones de resistencia a DRV

Se han identificado 11 mutaciones en el gen de la proteasa (V11I, V32I, L33F, I47V, I50V, I54L/M, T74P, L76V, I84V, L89V) relacionadas con pérdida de sensibilidad a DRV. La respuesta virológica a DRV/r en TAR de rescate se va reduciendo paralelamente al número de estas mutaciones, al igual que sucede con todos los IP/r y ETR. Los porcentajes de respuesta (CVP < 50 copias/mL a 48 semanas) con 0, 1, 2 y 3 mutaciones fue del 72%, 53%, 37% y 29%, respectivamente, en los estudios POWER (7% con ≥4 mutaciones).

Este dato debe ser muy tenido en cuenta para valorar el número de FAR acompañantes en el régimen de rescate según la actividad residual de DRV cuando ésta esté comprometida.

Inhibidores de la transcriptasa inversa no nucleósidos de segunda generación Etravirina Etravirina es un ITINN de segunda generación activo frente a determinadas cepas de VIH-1 con mutaciones de resistencia frente a EFV y NVP.

DUET 1 y 2

Los ensayos clínicos en fase III DUET se diseñaron para analizar la eficacia y seguridad de ETR en pacientes con experiencia previa a múltiples FAR. Con un diseño similar, DUET 1 y 2 son ensayos multinacionales, paralelos, aleatorizados a doble ciego, de ETR frente a placebo. Los criterios de inclusión fueron: CVP superior a 5.000 copias/mL, TAR estable durante al menos 8 semanas, presencia de ≥1 mutación frente a ITINN y ≥3 mutaciones frente a IP. Todos los pacientes recibieron DRV/r e ITIAN según terapia optimizada. El uso de ENF fue opcional. La variable principal del estudio era una CVP inferior a 50 copias/mL en la semana 24 (análisis por ITT y TLOVR). Se incluyeron 612 pacientes en el DUET-1 y 591 en el DUET-2. Los resultados fueron: CVP inferior a 50 copias/mL en tratados con ETR: 56% en el DUET-1 y 62% en el DUET-2, frente a 39% y 44% en los grupos placebo, respectivamente (p <0,01 y p <0,001). La CVP se redujo en 2,4 y 2,3 log₁₀ en los grupos con ETR y 2,3 y 1,7 log₁₀ en los de placebo (diferencia sin significación estadística). Entre los pacientes que recibieron ETR y ENF en el tratamiento optimizado, 60% y 73% alcanzaron una CVP inferior a 50 copias/mL, frente a 56% y 68% en los de los grupos placebos, respectivamente. Los resultados conjuntos de ambos estudios a las 48 semanas confirman los datos previos, y un 61% de los pacientes con ETR alcanzaron una CVP inferior a 50 copias/mL frente al 40% de los pacientes asignados al grupo placebo (p<0,0001); el descenso de la CVP fue de -2,25 log₁₀ y -1,49 log₁₀, respectivamente⁴²⁰. En la semana 96, el análisis combinado de ambos estudios indica que la eficacia de ETR más terapia optimizada fue superior a la del tratamiento comparador: 57% frente al 36%, respectivamente (p<0,001). El 91% de los pacientes asignados a ETR que alcanzaron una CVP inferior a 50 copias en la semana 48 persistían con la misma eficacia virológica en la semana 96. Por otra parte el número de eventos clínicos asociados a sida o muerte fue menor en el grupo que recibió ETR (p=0,06) y alcanzó diferencias estadísticamente significativas cuando se compararon exclusivamente los pacientes de ambos grupos que además recibían ENF habiéndola utilizado previamente (5,9% en el grupo de ETR frente al 10,1% en el grupo placebo; p=0,02).

La tolerancia a la ETR fue buena, siendo el efecto secundario más frecuente un exantema leve o moderado. Éste lo manifestaron el 19% de los pacientes tratados con ETR frente al 12% del grupo control (p<0,0001); apareció en las primeras semanas, la mayoría fue de grado leve-moderado (solo el 1% se consideró de grado 3) y sólo en el 2% se retiró el tratamiento por su causa. Hubo una incidencia más elevada de exantema entre las mujeres. Un tercio (32%) de las mujeres que recibieron DRV/r + ETR desarrollaron exantema, frente a un 19% de las que recibieron ETR y placebo. Asimismo, una proporción más elevada de mujeres con DRV/r debió suspender ETR por exantema (5% en el grupo DRV/r + ETR frente a 2% en el grupo ETR + placebo). La historia de exantema previo con NVP o EFV no se asoció con la aparición de exantema frente a ETR⁴²⁰.

Se han identificado 17 mutaciones en su *score* ponderado que disminuyen la tasa de respuesta a ETR en los estudios DUET: V90I, A98G, L100I, K101E/H/P, V106I, E138A, V179D/F/T, Y181C/I/V, G190A/S y M230L⁴⁴⁰. Entre estas mutaciones, Y181I/V/C seguida de L100I, K101P, y M230L son las que generan una mayor resistencia a ETR. Estas mutaciones pueden seleccionarse tras el fracaso virológico a ITINN de primera generación, y siempre que vaya a usarse ETR debe evaluarse su actividad si existen mutaciones para ITINN. La puntuación obtenida con la suma de cada mutación se ha correlacionado con respuesta virológica observada en los estudios DUET.

Por otra parte la compañía Monogram ha desarrollado un *score* que asigna a cada mutación un valor en función de su peso (Valor 4: L100I, K101P, Y181C/I/V; valor 3: E138A/G, V179E, G190Q, M230L, K238N; valor 2: K101E, V106A/I, E138K, V179L, Y188L, G190S; y valor 1: V90I, A98G, K101H, K103R, V106M, E138Q, V179D/F/I/M/T, Y181F, Y189I, G190A/E/T, H221Y, P225H, K238T). En este *score* la puntuación obtenida con la suma de los puntos de cada mutación se correlaciona con el fenotipo. Si el resultado es inferior a 4, ETR tiene un 90% de probabilidades de ser eficaz *(fold change <2,9)*. La Plataforma de resistencias de la Red de Investigación en sida (RIS) adjudica dos puntos a las mutaciones Y181C/I/V, L100I, K101P, V179F, G190E, M230L y un punto al resto, considerando resistencia un *score ≥*3.

Los pacientes que han seleccionado K103N como única mutación en su genotipo poblacional tras fracaso a EFV o NVP contienen frecuentemente poblaciones minoritarias con otras mutaciones frente a ITINN. Hasta en el 45% de los casos se encuentran mutaciones específicas frente a ETR⁴⁴¹. No se ha confirmado aún el impacto en la respuesta a una pauta de rescate con ETR de este fenómeno. Sin embargo, en aquellos casos en que tras un fracaso a ITINN de primera generación se aísle alguna mutación frente a ITINN en el genotipo convencional, debería confirmarse siempre que sea posible la presencia de otras mutaciones minoritarias, con el fin de seleccionar la mejor pauta de rescate para cada paciente.

Inhibidores de la unión

Enfuvirtida

ENF inhibe la fusión del VIH-1, evitando su penetración y replicación. Se administra por vía subcutánea dos veces al día y su principal efecto adverso es la reacción en el punto de inyección (Tabla 9).

TORO I y II

Los estudios TORO son dos ensayos abiertos en fase III en los que se comparó la actividad antiviral de ENF en combinación con una pauta optimizada frente a una pauta optimizada en pacientes en fracaso viral con múltiples tratamientos previos. Se incluyeron alrededor de 1.000 pacientes con una mediana de CVP basal superior a 100.000 copias/mL y de linfocitos CD4 $^+$ inferior a 100 células/ μ L. A las 24 semanas el descenso de la CVP fue mayor en los tratados con ENF. ENF produjo un descenso de CVP de -0,93 log₁₀ (TORO I) y -0,78 log₁₀ (TORO II) (p<0,0001 frente a la rama comparadora). A la semana 48, en el análisis combinado de los dos estudios, el descenso de la CVP fue de -1,48 log₁₀ copias/mL en el grupo de ENF y -0,63 log₁₀ copias/mL en el de tratamiento optimizado (p<0,0001). La probabilidad de alcanzar una respuesta virológica fue más del doble en el grupo de ENF (descenso CVP >1 log₁₀ 37% frente 17%; CVP <400

copias/mL, 30% frente 12% y CVP <50 copias/mL, 18% frente a 8% (p<0,0001)). El tiempo hasta el fracaso del grupo con ENF triplicó al del grupo control (32 y 11 semanas, respectivamente; p<0,0001). Es decir, tanto el análisis primario de eficacia como el resto de análisis secundarios predefinidos, demostraron que el tratamiento de rescate era más eficaz cuando se utilizaba ENF.

Se han identificado mutaciones en la región HR1 de la gp41 del virus que reducen la sensibilidad al ENF (G36D/S, I37V, V38A/M/E, Q39R, Q40H, N42T, N43D. Otras mutaciones o polimorfismos en otras regiones de la envoltura, como por ejemplo la región HR2) podrían disminuir la sensibilidad a ENF⁴⁴². Por ello, secuenciar sólo las mutaciones de la región HR1 podría ser inadecuado cuando se sospecha resistencia a ENF. La barrera genética de ENF es típicamente baja, desarrollando resistencia al fármaco con solo una mutación.

Por otra parte, la inclusión de ENF en el régimen de rescate ha demostrado sistemáticamente incrementar las tasas de respuesta en otros estudios en que se evaluaban otros FAR, pero se permitía el uso de ENF^{434-438,443}.

La inconveniencia de su administración por vía subcutánea dos veces al día limita su uso. Un documento de consenso español recomienda su uso en pacientes en los que no se pueda confeccionar un tratamiento óptimo con tres FAR activos.

Inhibidores del correceptor CCR5

Maraviroc

MVC es el único antagonista del correceptor CCR5 actualmente comercializado. Impide la entrada del virus con tropismo R5. Presenta una actividad potente frente a cepas con tropismo R5 tanto silvestres como con mutaciones para ITIAN, ITINN o IP, con los que no comparte resistencia cruzada.

MOTIVATE 1 y 2

Los estudios MOTIVATE 1 y 2 son dos ensayos clínicos en fase III y doble ciego, donde se aleatorizó a los pacientes incluidos a recibir MVC (QD o BID) frente a placebo, añadiendo a cada uno de los brazos un tratamiento optimizado. Los criterios de inclusión fueron: CVP superior a 5.000 copias/mL, tropismo R5 y resistencia a ≥1 FAR o ≥2 IP. Los pacientes se estratificaron según el uso de ENF y la CVP. Se incluyó a más de 1.000 pacientes, de los que 209 recibieron placebo, 414 MVC QD (150 ó 300 mg) y 426 MVC BID (150 ó 300 mg). La variable principal del estudio fue la reducción de la CVP en la semana 48 y la proporción de pacientes con CVP inferior a 400 y a 50 copias/mL fue una variable secundaria.

Los resultados combinados de ambos estudios a las 48 semanas muestran que el descenso de CVP fue: MVC QD: -1,68 log; MVC BID: -1,84 log; y grupo placebo: -0,78 log; la proporción de pacientes con CVP inferior a 400 copias/mL: 51,7%, 56,1% y 22,5%, respectivamente (valor de p frente a placebo <0,0001); y CVP inferior a 50 copias/mL: 43,2%, 45,5% y 16,7%, respectivamente (valor p frente a placebo <0,001). El incremento del número de linfocitos CD4⁺ fue también significativamente mayor y más precoz en los grupos que recibieron MVC. Esta ventaja en la recuperación inmunológica ha sido también demostrada con independencia de la eficacia virológica. La eficacia (CVP <50 copias/mL) fue también superior cuando los pacientes recibieron ENF por primera

vez: 64% y 61% en los grupos que recibieron MVC y 27% en los grupos que recibieron placebo con ENF. En la semana 96, el 41,3% de los pacientes que recibieron MVC en pauta BID persistían con una CVP <50 copias frente al 7,2% de los pacientes del grupo placebo. En cuanto a variables de *endpoints* clínicos "duros", el tratamiento con MVC se asoció de manera significativa con un mayor tiempo hasta la aparición de eventos diagnósticos de sida en comparación con el placebo (p=0,042), siendo hasta la fecha el único estudio de rescate en que ha podido demostrarse este beneficio clínico incluyendo solo uno de los nuevos fármacos activos.

Los efectos adversos producidos por MVC no fueron superiores a los del grupo placebo. Los temores iniciales acerca de un posible mayor riesgo de hepatotoxicidad o de una mayor incidencia de tumores asociada al bloqueo del correceptor humano CCR5 no solo no se han confirmado sino que la incidencia de determinados eventos clínicos, y específicamente de algunos tumores, ha sido significativamente menor en la rama tratada con MVC.

Se analizó retrospectivamente la relación del fracaso virológico en los pacientes de los MOTIVATE con el tropismo viral. Dos tercios de los pacientes con MVC que fracasaron tenían un tropismo dual (R5/X4) o bien el tropismo varió en el periodo de tiempo comprendido entre la selección y el inicio del tratamiento. El cambio de tropismo de R5 a dual o X4 se observó en el 7,5% de los pacientes que fracasaron con MVC y sólo en el 1,9% del grupo placebo. No se observó cambio de tropismo en el 4% de los fracasos a MVC. Entre los pacientes que fracasaron en los estudios MOTIVATE, los que recibieron MVC asociado a ≥2 FAR activos presentaron una tasa de cambio de tropismo R5 a D/M o X4 similar a los tratados con placebo. Tras la retirada de MVC las cepas revertían rápidamente a R5. Todos los pacientes que recibían MVC presentaron un incremento significativo del número de linfocitos CD4⁺.

Resistencia a Maraviroc

La eficacia de MVC exige la presencia de tropismo viral R5 y no es activo cuando las poblaciones virales presentan tropismo viral X4 o dual (R5/X4). Algunos casos de fracaso virológico durante el tratamiento con MVC corresponden a un sobrecrecimiento de poblaciones virales con tropismo X4 prexistentes y no detectadas por la baja sensibilidad de la prueba basal (*Trofile*^R inicial detectaba virus X4 con una certeza del 100% sólo cuando la proporción era ≥10 % de la población viral y la CVP >1.000 copias/mL). La técnica de *Trofile*^R ES detecta poblaciones minoritarias con tropismo X4 hasta en una proporción del 0,1%. Asimismo el tropismo puede detectarse por métodos genotípicos. Recientemente se ha comunicado una predicción del tropismo y de respuesta a MVC similar con el genotipo tanto en pacientes sin tratamiento previo como en rescate. Recientemente se han actualizado las guías españolas para la determinación del tropismo, las cuales recomiendan la realización de pruebas genotípicas para su determinación del se calcado de pruebas genotípicas para su determinación del tropismo, las cuales recomiendan la realizarse en todos los episodios de fracaso virológico (exceptuando aquellos en los que ya conste un tropismo previo no R5) simultáneamente al genotipo poblacional estándar de la RT y PR.

Además, se han identificado mutaciones en la molécula gp120 que permite al virus unirse al receptor R5 en presencia de MVC sin cambiar de tropismo durante el tratamiento⁴⁴². El perfil de mutaciones seleccionadas por MVC en aquellos casos en que se mantiene el tropismo R5 es complejo y todavía no se conoce con exactitud su patrón.

MVC es un substrato de la glicoproteína-P y su metabolismo se realiza a través del CYP3A4; por lo que presenta un potencial importante de interacciones con fármacos que utilizan la misma vía metabólica (véase el apartado de interacciones).

Inhibidores de la integrasa

Raltegravir

La integrasa es una de las tres enzimas fundamentales del ciclo de replicación del VIH-1. Su función es catalizar la inserción del ADN proviral en el genoma de la célula huésped. RAL es un fármaco capaz de inhibir la integrasa, y es activo frente a cepas de VIH-1 con mutaciones de resistencia a las tres familias clásicas (ITIAN, ITINN e IP) y frente a cepa silvestre.

BENCHMRK 1 y 2

Los ensayos clínicos en fase III BENCHMRK 1 y 2 son estudios paralelos, aleatorizados y doble ciego, diseñados para analizar la eficacia de RAL en rescate de pacientes expuestos a múltiples FAR y en fracaso virológico. Los criterios de inclusión fueron CVP superior a 1.000 copias/mL, resistencia genotípica o fenotípica al menos a un FAR de cada una de las tres clases (ITIAN, ITINN e IP). Se incluyeron 350 pacientes (BENCHMRK-1) y 349 (BENCHMRK-2) en situación clínica muy avanzada (82% con criterios de sida) y que habían recibido una mediana de 12 FAR durante 9,9 años. Los pacientes fueron aleatorizados (2:1) a recibir RAL o placebo, ambos con terapia optimizada. En los resultados combinados de ambos estudios a las 48 semanas, la proporción de CVP inferior a 400 copias/mL fue del 72,1 % en el grupo de RAL y del 37,1 % en el de placebo (p<0,001). La CVP inferior a 50 copias/mL fue del 62,1 % en el grupo de RAL y 32,9 % en el de placebo (p<0,001). La eficacia de RAL fue superior a la del placebo, independiente de la CVP, de la cifra de linfocitos CD4⁺ o del índice GSS/PSS ≥ 2.

Cuando en la terapia optimizada se asoció DRV/r y ENF la proporción de CVP <400 copias/mL fue 98% (RAL) y de 87% (placebo); si solamente recibían ENF, el 90% (rama de RAL) y 63% (rama placebo) tenían <400 copias/mL, mientras que si sólo recibían DRV/r las proporciones fueron de 90% y 55%, respectivamente. La seguridad y tolerabilidad de RAL resultó comparable a placebo. Se observó una mayor incidencia de neoplasias en el grupo asignado a RAL (3,5% frente a 1,7%), aunque no fue estadísticamente significativa ni se ha comunicado ninguna relación directa con el fármaco. Estudios posteriores que analizan la incidencia de neoplasias en ensayos clínicos y programas de acceso expandido no han observado una mayor incidencia de neoplasias entre los pacientes que reciben RAL.

El análisis combinado en las semanas 96, 156, y 192 de los estudios BENCHMRK demostró la eficacia duradera de RAL⁴⁴⁵. El 58% de los pacientes a 96 semanas (45% a 192 semanas) que recibieron RAL persistían con CVP inferior a 50 copias/mL frente al 26% de los pacientes (16% a 192 semanas) de los del grupo placebo. Este porcentaje se incrementó al 79% cuando los pacientes recibían además otros fármacos activos.

RAL se metaboliza por glucuronización hepática y no es inductor o inhibidor de los isoenzimas del citocromo P450, por lo que su potencial de interacciones farmacológicas es bajo (véase el apartado de interacciones).

Mutaciones de resistencia a RAL

En estudios *in vitro* se han identificado hasta 41 mutaciones del gen de la integrasa asociadas a resistencia a RAL. Un total de 105 pacientes de 462 que recibieron RAL en los estudios BENCHMRK desarrollaron fracaso virológico en la semana 48, aunque sólo en 94 de ellos se pudo realizar un estudio de resistencias. En 64/94 (68%) se detectaron mutaciones de resistencia a RAL con 3 patrones de resistencia: 1) N155H + L74M, E92Q, T97A, V151I, G163R; 2) Q148K/R/H + G140S/A, E138K; y 3) Y143R/C + L74A/I, T97A, I203M, S230R. RAL es un fármaco de barrera genética baja, siendo necesarias sólo 2 mutaciones para la resistencia completa. Sin embargo, alguna mutación (Q148K/H e incluso N155H) confiere ya un nivel de resistencia elevado a RAL por sí sola.

Las resistencias cruzadas con otros fármacos de la familia de los InInt son muy frecuentes con elvitegravir, por lo que probablemente su uso secuencial no será posible. Elvitegravir ha demostrado una eficacia no inferior a RAL en rescate en estudios en fase III⁴⁴⁶. Con otros InInt en desarrollo (dolutegravir) el grado de resistencia cruzada es mucho menor, permitiendo su uso en rescates a fracasos con RAL⁴⁴⁷.

Uso combinado de varios de los nuevos fármacos en un TAR de rescate.

Estudio TRIO

Es un estudio abierto, no comparativo, que tuvo como objetivo evaluar la eficacia y seguridad de un TAR de rescate que contenía RAL + DRV/r + ETR. Incluyó 103 pacientes con: edad ≥18 años, CVP >1.000 copias/mL, sin TAR previo con fármacos en investigación, con historia de fracaso virológico a ITINN, e infección por VIH-1 multirresistente definida como: ≥3 mutaciones primarias de resistencia a IP; ≥3 mutaciones a ITIAN; ≤3 mutaciones a DRV; y ≤3 mutaciones a ITINN. Todos los sujetos recibieron RAL + DRV/r + ETR, junto con ITIAN (83%) y ENF (12%). En la semana 24, 93 pacientes (90%; IC 95%, 85 a 96%) y en la semana 48, 89 pacientes (86%; IC 95%, 80 a 93%) lograron una CVP inferior a 50 copias/mL. La mediana de descenso de la CVP en la semana 48 respecto al valor basal fue de -2,4 log₁₀ (IQR: -2,9 a -1,9). La mediana de ascenso de los linfocitos CD4⁺ respecto al valor basal fue de 108/μL (IQR: 58-169). Durante el periodo del estudio, sólo un paciente tuvo que suspender el tratamiento por toxicidad.

Otros estudios retrospectivos no aleatorizados han confirmado asimismo la elevada tasa de respuesta virológica que se obtiene combinando DRV/r + ETR + RAL en un TAR de rescate avanzado 448 .

Opciones de tratamiento en pacientes con múltiples fracasos virológicos y sin opciones terapéuticas. Tratamientos con pautas de TAR no supresoras

Con los FAR actualmente disponibles puede conseguirse la supresión virológica completa y duradera (<50 copias/mL) en la gran mayoría de pacientes con fracaso virológico, por avanzado que sea. El fracaso virológico en el paciente multitratado no siempre conduce de forma rápida al fracaso inmunológico y progresión clínica. De hecho, muchos pacientes continúan con recuentos de CD4 relativamente estables y aproximadamente sólo un tercio experimenta un descenso. Este último hecho se observa más

frecuentemente cuando la CVP es elevada, habitualmente superior a 10.000-20.000 copias/mL.

En un paciente en el que resulte imposible formar un TAR potencialmente eficaz con al menos dos FAR activos por problemas de resistencia, toxicidad, comorbilidad grave, adherencia o tolerabilidad, pueden plantearse otras opciones diferentes al TAR de rescate si la situación inmunitaria del paciente lo permite.

Diversos estudios han demostrado los efectos beneficiosos de mantener un TAR no supresor (frente a su interrupción completa) en caso infección avanzada multirresistente sin opciones de iniciar una pauta supresora. En pacientes con un recuento de linfocitos CD4^+ inferior a 50/ μ L, el riesgo de desarrollar una enfermedad oportunista diagnóstica de sida era un 22% inferior si el paciente continuaba con el TAR a pesar de presentar fracaso virológico respecto a los que lo suspendieron. Esto se relaciona con la persistencia de una población viral de VIH-1 menor y con baja capacidad replicativa y por tanto, probablemente menos lesiva.

Estos TAR no supresores deben ser regímenes cómodos de tomar, poco tóxicos, que disminuyan la capacidad replicativa viral y que no acumulen mutaciones que puedan comprometer futuros TAR de rescate. No se recomienda continuar con pautas no supresoras que contengan IP, ITINN o InInt, ya que la acumulación de resistencias frente a estos fármacos dificultaría la eficacia de futuros fármacos de estas familias. Pautas con 2 ó 3 ITIAN, que incluyan 3TC o FTC, y simultáneamente AZT y TDF (por su antagonismo sobre la RT) podrían resultar parcialmente eficaces en algunos pacientes si su recuento de linfocitos CD4⁺ no es bajo. Pueden mantener transitoriamente (meses) una población viral con baja *fitness* y deben remplazarse por un régimen de rescate supresor con tres FAR activos en cuanto sea posible.

La mutación M184V compromete la capacidad replicativa del VIH-1. Un ensayo que incluía pacientes multirresistentes con esta mutación, aleatorizados a continuar sólo con 3TC o a suspender el tratamiento, mostró en la semana 48, que 69% (IC 95%, 51 a 83%) del grupo que interrumpió frente a 41% (IC 95%, 26 a 59%) de los que continuaron con 3TC, presentaron un evento clínico o fracaso inmunológico. En los que recibían 3TC el fracaso fue más tardío (p=0,01) y el descenso de CD4, rebrote de CVP y aumento de capacidad replicativa fueron menores. En función de estos estudios, se propone que el tratamiento de pacientes con múltiples fracasos contenga 3TC o FTC para mantener en la población viral la mutación M184V y reducir su capacidad replicativa. Sin embargo, este dato no se ha confirmado cuando se usan pautas de rescate supresoras que consiguen CVP indetectables.

Replicación viral baja en pacientes multitratados

Dos determinaciones sucesivas de CVP superiores a 50 copias/mL 6 meses después de haber iniciado el TAR o tras haber conseguido previamente una CVP inferior a 50 copias/mL se considera fracaso virológico. Con frecuencia, los pacientes con replicación viral baja y persistente del VIH-1, que podemos definir como una CVP entre 50-200 copias/mL, mantienen estable el número de linfocitos CD4⁺. El tratamiento de elección es un régimen que consiga nuevamente la supresión mantenida por debajo de 50 copias/mL. Sin embargo, la ausencia o complejidad de otras alternativas terapéuticas, la conservación de la inmunidad y la dificultad de obtener resultados válidos con pruebas

de resistencia genotípicas o determinación del tropismo viral por la baja viremia plasmática, dificultan el manejo de estos pacientes.

En este escenario se han propuesto diferentes estrategias terapéuticas, aunque ninguna de ellas ha sido evaluada en estudios prospectivos longitudinales y comparativos. Si la pauta de TAR presenta una baja barrera genética y se confirma que la baja viremia no responde a un error de técnica de laboratorio, es prudente sustituirla bajo criterio clínico por otra con barrera genética elevada basada en un IP/r, independientemente de que no se consiga demostrar la presencia de mutaciones. No está bien establecida cuál es la mejor actitud en pacientes con replicación viral baja, aunque se conoce que estos pacientes pueden seleccionar nuevas mutaciones de resistencia, desarrollar fracasos y contribuir a la diseminación de la infección a otras personas. La posibilidad de obtener resultados en las pruebas de resistencia o tropismo viral, las alternativas disponibles y sobretodo la posibilidad de cambiar el TAR a un régimen que incluya al menos dos FAR plenamente activos, condicionan la actitud del clínico en este escenario. Si el régimen de TAR presenta una barrera genética elevada y el riesgo de selección de resistencias es muy bajo, puede en determinados casos mantenerse al paciente con el mismo tratamiento.

Suspensión del TAR

La interrupción del TAR en pacientes multi-resistentes se planteó ante la hipótesis de que la reaparición de la cepa silvestre permitiría una mejor respuesta tras la reintro-ducción del tratamiento. Los ensayos clínicos realizados para evaluar esta estrategia han evidenciado un descenso importante del número de linfocitos CD4⁺ durante la interrupción frente a los que continúan con TAR. No se recomienda la suspensión del TAR como opción electiva en ninguna situación en sujetos con resistencia múltiple.

Recomendaciones de cambio de TAR por fracaso virológico avanzado

- El cambio del TAR por fracaso virológico debe efectuarse de modo precoz para evitar el acúmulo de mutaciones y facilitar la respuesta al nuevo tratamiento (B-II)
- El TAR nuevo debe contener tres fármacos antirretrovirales totalmente activos (A-I). Si no es posible diseñar un TAR de rescate con tres fármacos activos, la combinación de dos plenamente activos y otros que conserven cierta actividad puede resultar eficaz en una elevada proporción de pacientes
- Se debe realizar un estudio de resistencias y una prueba de tropismo para confeccionar el mejor régimen alternativo (A-I)
- La prueba de resistencias debe realizarse mientras el paciente está recibiendo el tratamiento fallido o lo más precoz tras la suspensión (A-II)
- Si se dispone de pruebas genotípicas previas, siempre se debe tener en cuenta el conjunto de mutaciones detectadas (genotipo acumulado) (B-II)
- Se debe conseguir CVP indetectable (<50 copias/mL) en cualquier tratamiento de rescate (A-I)

- En la elección del nuevo TAR se deben analizar las causas que motivaron el fracaso (adherencia o interacciones medicamentosas), la historia farmacológica, las toxicidades que haya presentado y las mutaciones de resistencia previas (C-II)
- El nuevo TAR debe ser cómodo, bien tolerado por el paciente y lo menos tóxico posible (C-II)
- DRV/r (600/100 mg BID) ha demostrado superioridad frente a LPV/r BID como IP/r en el tratamiento de rescate, siendo el fármaco de elección en este contexto. Los estudios tienen suficiente poder estadístico para confirmar esta superioridad si existen al menos una mutación primaria en la proteasa, pero no si no existe ninguna (A-I). La dosis habitual debe ser 600/100 mg BID, aunque en los casos sin mutaciones para DRV ni mutaciones primarias en la proteasa puede utilizarse la dosificación 800/100 mg QD (A-I)
- El uso de TPV/r queda restringido a aquellos casos en que su actividad residual estimada sea claramente superior a la de DRV/r BID, y no se requiera el uso de etravirina (contraindicada con TPV/r) (A-II)
- Deben evitarse los análogos de timidina, especialmente d4T, si existen otras alternativas en cualquiera de las líneas del tratamiento de rescate (C-I)
- No se deben realizar interrupciones estructuradas del TAR en situaciones de fracaso virológico con el objetivo de aumentar la eficacia del TAR de rescate (A-I)
- No se recomienda suspender definitivamente el TAR en pacientes con fracaso virológico avanzado y sin opciones terapéuticas de rescate, incluso aunque reciban pautas con resistencia demostrada (B-II). En esta situación debe buscarse un tratamiento basado en fármacos que disminuyan la capacidad replicativa viral y no añadan más resistencia a la ya existente (p.e. 3TC o FTC o TDF) y deben vigilarse estrechamente las cifras de linfocitos CD4 y la CVP (B-II)
- El manejo de los pacientes con fracaso virológico avanzado es complejo. Es recomendable consultar con un clínico o virólogo con experiencia en resistencias y TAR de rescate que tenga acceso a fármacos de uso restringido a través de programas de acceso expandido si éstos pueden tener interés en el caso para conseguir un TAR con las máximas posibilidades de éxito (C-III)

6. ADHERENCIA

Se entiende por adherencia al TAR la capacidad del paciente para implicarse correctamente en la elección, inicio y cumplimiento del mismo a fin de conseguir una adecuada supresión de la replicación viral.

El control virológico depende de múltiples factores pero la adherencia incorrecta es la primera causa de fracaso terapéutico, relacionándose con mala respuesta virológica⁴⁴⁹ peor reconstitución inmune⁴⁵⁰, y mayor riesgo de mortalidad^{451,452}. Por tanto, es muy importante que los pacientes sean conscientes de su enfermedad, entiendan claramente el objetivo del TAR, participen en la decisión de iniciarlo, se sientan capaces de

cumplir dicho tratamiento y comprendan la enorme importancia que tiene una toma continuada y correcta de la medicación.

Durante los últimos años se ha intentado conocer los factores asociados a mala adherencia. Las diferencias entre los estudios, muchos de ellos carentes del adecuado rigor metodológico, hacen difícil realizar generalizaciones con alto grado de evidencia⁴⁵³. Se han identificado varios factores asociados con mala adherencia, entre los que destacan: mala relación médico-paciente, consumo activo de drogas, enfermedad mental, edad más joven, nivel educativo del paciente, idioma, falta de apoyo social, complejidad del tratamiento, efectos secundarios y, más recientemente, temor acerca de la aparición de alteraciones metabólicas y morfológicas^{7, 454,455}. Un tema controvertido es la relación de la adherencia con la edad; su importancia va ser creciente dado el envejecimiento de la población infectada por el VIH-1. Se ha encontrado peor cumplimiento en pacientes muy jóvenes y mejor cumplimiento en pacientes mayores de 65 años⁴⁵⁵. El uso concomitante de otros fármacos, la mayor prevalencia de efectos adversos, de interacciones, la depresión y las alteraciones de memoria podrían causar menor adherencia en los mayores⁴⁵⁶. Lo que parece claro es que los trastornos neurocognitivos, más frecuentes en la población de más edad, suponen un factor negativo para la adherencia⁴⁵⁷ y que este aspecto deberá ser estudiado y atendido en los próximos años. Por el contrario, el apoyo emocional y vital, la capacidad para incluir la medicación en las actividades de la vida diaria sin ocultarla y la comprensión de la relación entre adherencia y desarrollo de resistencias son factores que predicen una adherencia correcta. Corregir los primeros e incrementar los segundos forma parte de la optimización del TAR y debe incorporarse a la rutina de seguimientos de los pacientes con infección por VIH-1 (Tabla 10).

El inicio del TAR no suele ser urgente en los pacientes con infección crónica, exceptuando aquellos que presentan enfermedades definitorias de sida 323 . En los pacientes con tuberculosis, empezar el tratamiento antirretroviral dentro de las 2-4 semanas siguientes al inicio del tratamiento antituberculoso, se asocia a una menor mortalidad, especialmente en aquellos pacientes con <200 linfocitos CD4/µL $^{458-460}$.

Antes de iniciar la terapia conviene preparar al paciente, identificar las situaciones que puedan dificultar la adherencia correcta e intentar corregirlas⁴⁶¹. Es importante conocer los factores dependientes del paciente (laborales, restricciones dietéticas, etc.) para diseñar un TAR a la medida. Cuando se inicie el TAR es imprescindible que se ofrezca una información detallada, soporte y accesibilidad en los aspectos relacionados con el tratamiento. En este sentido el uso de un teléfono directo puede facilitar el contacto entre el paciente y los profesionales.

Durante el TAR es fundamental evaluar periódicamente la adherencia, que debe tenerse en cuenta en las decisiones terapéuticas. Dado que no existe un método fiable de evaluación, se recomienda utilizar varias técnicas como la entrevista, pasar un cuestionario estructurado (existen cuestionarios disponibles validados en España^{462,463}) recuento de medicación sobrante y registro de recogida de la medicación en la farmacia así como la evolución clínica y virológica. Para ello es indispensable que exista una buena coordinación entre todos los estamentos implicados y en particular entre clínicos y farmacéuticos.

La entrevista y los cuestionarios estructurados, son de fácil acceso en cualquier ámbito asistencial, sin embargo, no son muy precisos, y en determinadas circunstancias pueden arrojar resultados no válidos. Los métodos más sofisticados y caros para evaluar la adherencia como determinación de los niveles plasmáticos de fármacos⁴⁶⁴ o dispositivos electrónicos que registran la toma de medicación (MEMS: *Medication Event Monitoring System*), se circunscriben al campo de la investigación⁴⁶⁵. Con ninguno de ellos hay información suficiente como para recomendar su utilización rutinaria en clínica.

Las características virológicas del VIH-1 determinan que cuando existen niveles subterapéuticos de los FAR el virus puede replicarse y desarrollar resistencias. Los datos obtenidos durante los primeros tratamientos combinados, basados en IP sin potenciar constataron que la máxima eficacia requería una adherencia prácticamente perfecta, clásicamente >95%⁴⁶⁶. Estudios recientes sugieren que con niveles menores se pueden alcanzar los objetivos terapéuticos en regímenes basados en ITINN o IP/r, especialmente en pacientes que consiguen viremias indetectables 467-469. Debe destacarse que no sólo es importante el porcentaje de dosis omitidas sino también los patrones de adhesión subóptima. Las interrupciones de tratamiento (más de dos días sin tomar ningún fármaco) presentan mayor repercusión en la respuesta virológica que la omisión ocasional de dosis⁴⁷⁰. En la terapia de inicio, también se ha demostrado una relación lineal entre nivel de adherencia y efectividad: en tratamientos basados en ITINN, por cada 10% de incremento en el cumplimiento, se observó un 10 % más de pacientes que consiguen viremias indetectables sostenidas⁴⁷¹. También pudieron evidenciarse diferencias entre distintos IP/r y su relación entre adherencia y efectividad, la adherencia subóptima a DRV/r tuvo un impacto menor comparado con LPV/r en pacientes sin tratamiento previo⁴⁷². Esta diferencia se mantuvo al realizar un análisis multivariante de regresión logística que ajustó múltiples factores de confusión (CVP y cifra de CD4 basales, edad y raza).

La relación entre adherencia y desarrollo de resistencias es más compleja que la idea establecida de que "la no adherencia aumenta el riesgo de resistencias". Se han encontrado diferencias en función de las familias de fármacos; así en pautas basadas en IP no potenciados se comprobó la aparición de resistencias con niveles altos de cumplimiento, mientras que en pautas con ITINN las resistencias son inusuales en los pacientes muy cumplidores, dándose en los poco adherentes y especialmente en los pacientes con interrupciones prolongadas del tratamiento 473; por el contrario, en el caso de los IP potenciados, la aparición de resistencias es mucho más difícil con cualquier nivel de adherencia debido a su elevada barrera genética 474.

En cualquier caso, ante un paciente con alta sospecha de presentar dificultades para el cumplimiento terapéutico, es mejor evitar las pautas basadas en FAR de baja barrera genética (como ITINN de primera generación o raltegravir) e iniciar TAR con pautas basadas en IP/r, que evitan el riesgo de seleccionar resistencias relevantes en caso de incumplimiento y fracaso virológico.

Si se detecta falta de adherencia debe intervenirse de forma activa para corregirla. La monitorización de la adherencia no debe utilizarse para explicar un fracaso o el desarrollo de resistencias, sino para prevenir que éstos se produzcan mediante la detección precoz de los problemas e implementar rápidamente medidas correctoras⁴⁷⁵. A modo de ejemplo, cuando se analizó la adherencia fármaco por fármaco, en lugar de hacerlo de forma global, se detectó que en un 30% de los pacientes tenía falta de adherencia

diferencial, es decir a alguno de los componentes del tratamiento y esta falta de adherencia se relacionó con fracaso virológico⁴⁷⁶. La coformulación de fármacos simplifica el TAR y podría prevenir y corregir este problema, mejorando la adherencia global⁴⁷⁷⁻⁴⁷⁹ e impidiendo la adherencia selectiva en pacientes que reciben tratamiento triple. De este modo se reducen las posibilidades de selección de resistencias⁴¹⁷ por monoterapia encubierta.

Frecuentemente, en pacientes con fracaso virológico asociado a mala adherencia, se intenta priorizar un tratamiento QD en el rescate para favorecer su cumplimiento. En este sentido, no existe evidencia suficiente para asegurar que en este escenario existirá mejor cumplimiento con un tratamiento QD que con otro administrado BID. Por este motivo, debe priorizarse siempre el mejor régimen de TAR según el estudio de resistencias disponible, la historia terapéutica del paciente, administrando los fármacos en las dosis en que han sido evaluados en sus respectivos ensayos clínicos.

Las estrategias son múltiples, algunas basadas en teorías psicológicas⁴⁸⁰ y la mayoría dirigidas a paliar los condicionantes sociales o individuales de los pacientes. Desde esta perspectiva cabe analizar las intervenciones sobre adherencia mediante las denominadas "entrevistas motivacionales"⁴⁸¹, las visitas domiciliarias y la intervención específica sobre la pareja del paciente, todas ellas relativamente complejas, sin resultados definitivos y sin grandes diferencias frente al grupo control asesorado acorde a una buena práctica clínica. Las intervenciones dirigidas a ciertas poblaciones especiales (mujeres, latinos en EEUU, y pacientes con historia previa de alcoholismo) no han logrado mejorar la adherencia al tratamiento⁴⁵³.

Las intervenciones sencillas de educación y soporte en aspectos prácticos del tratamiento han demostrado ser beneficiosas⁴⁸². Probablemente la intervención que ha demostrado mayor eficacia ha sido el soporte interpersonal estructurado, en el que personal sanitario entrenado emplea estrategias individualizadas.

Respecto al tratamiento directamente observado (TDO), en un metaanálisis de 17 estudios se ha demostrado que incrementa la probabilidad de conseguir CVP indetectable (*HR* 1,24; IC 95%, 1,08 a 1,41), mayor incremento de CD4, y adherencia >95%. Este beneficio es incluso mayor cuando se aplica a determinadas poblaciones con grandes dificultades para un cumplimiento óptimo, como usuarios de drogas o en prisiones, pero no parece mantenerse a largo plazo tras cesar la intervención^{482, 483}.

La adhesión al tratamiento puede decaer con el tiempo y por tanto las estrategias diseñadas para optimizarla deben dirigirse no sólo a incrementarla sino a mantenerla constante⁴⁸⁴.

GeSIDA y el PNS, conjuntamente con la Sociedad Española de Farmacia Hospitalaria han revisado los factores que influyen en la adherencia, los métodos de evaluación y las posibles estrategias de intervención y actuación de un equipo multidisciplinar que debe ser integrado por médicos, farmacéuticos, enfermeras, psicólogos y personal de soporte. Remitimos a ese documento⁷ para profundizar en el tema de la adherencia al TAR.

Recomendaciones

- Antes de iniciar el TAR se debe preparar al paciente, identificar y corregir las causas que pueden limitar su adherencia. Si el paciente no está preparado, en general es mejor retrasar el inicio del TAR (A-III)
- Una vez iniciado el TAR se recomienda efectuar un primer control a las 2-4 semanas para corregir los factores inherentes al tratamiento o del propio paciente que puedan limitar la adherencia (B-III)
- Si la adherencia es correcta, debe monitorizarse y reforzarse, coincidiendo con las visitas clínicas (A-III)
- El control de la adherencia debe realizarse por un equipo multidisciplinar, y en él deben estar implicados no sólo el médico sino también la enfermería, los profesionales de apoyo psicológico y la farmacia hospitalaria (B-III)
- Cada unidad asistencial debiera realizar un seguimiento periódico de la adherencia, no sólo con vistas a detectar las faltas individuales de cumplimiento sino para conocer la magnitud del problema en su ámbito de trabajo; el análisis de los datos permitirá determinar las causas de los problemas detectados (abandonos, vacaciones terapéuticas, incumplimientos...) y elaborar estrategias concretas de actuación, tanto con los enfermos como en la estructura y funcionamiento del equipo asistencial (B-III)
- En pacientes con cumplimiento irregular es preferible utilizar pautas basadas en IP/r frente a las basadas en ITINN para dificultar la selección de resistencias (B-III)
- La combinación a dosis fijas de fármacos antiretrovirales simplifica el TAR y, por tanto, facilita la adhesión mantenida. El uso de regímenes completos en comprimido único constituye la estrategia más eficiente para prevenir la adherencia selectiva de fármacos (A-III)

7. EFECTOS ADVERSOS DEL TRATAMIENTO ANTIRRETROVIRAL

Los FAR pueden producir numerosos efectos secundarios que se presentan al inicio del tratamiento o a medio-largo plazo. En este último caso suelen asociarse a procesos fisiológicos o comorbilidades relacionados con el envejecimiento. Algunos de ellos son específicos de fármacos y otros de grupo. En las tablas 11-15 se muestra la toxicidad característica de cada familia y se resume la toxicidad por órganos y aparatos, la patogenia, la relación individual con cada fármaco, el diagnóstico y el tratamiento de los mismos. A continuación se comentan los que, por su frecuencia y/o potencial gravedad, tienen mayor relevancia clínica.

Toxicidad mitocondrial

En la Tabla 11 se exponen los posibles efectos adversos debidos al daño mitocondrial producido por la inhibición de la enzima ADN-polimerasa mitocondrial. El más grave de ellos, una combinación de acidosis láctica y esteatosis hepática (ALEH), es inducido por

d4T y, en menor medida, por ZDV y ddl. Su incidencia es baja, pero si no se diagnostica a tiempo puede ser mortal⁴⁸⁶. Las manifestaciones clínicas, subagudas e inespecíficas (astenia, disnea e insuficiencia hepática), o la acidosis aparecen cuando las concentraciones plasmáticas de lactato son superiores a 5-10 mmol/L. Debe tenerse un alto grado de sospecha y realizar el diagnóstico antes de que aparezca acidosis, pues en esta fase (hiperlactatemia asintomática) la mortalidad es muy inferior a la de la ALEH. Su tratamiento consiste en retirar los ITIAN responsables y monitorizar los niveles plasmáticos de lactato.

La lipoatrofia, aunque también es secundaria a toxicidad mitocondrial, se comenta en el apartado de anomalías de la distribución de la grasa corporal⁴⁸⁷.

Reacciones de hipersensibilidad

Aunque todos los FAR pueden provocar RHS, son mucho más frecuentes con ABC y los ITINN. La reacción de hipersensibilidad a ABC se ha descrito más arriba^{113, 254}.

Las RHS frente a los ITINN suelen presentarse con un exantema cutáneo y rara vez con un cuadro sistémico grave o con síndrome de Stevens-Johnson o necrólisis epidérmica tóxica (Tabla 12).

Hepatotoxicidad

Es, junto al exantema, el efecto adverso específico de grupo más importante de los ITINN, si bien su intensidad suele ser leve o moderada y son raros los casos de hepatitis sintomática. NVP provoca elevación de transaminasas con mayor frecuencia y se desaconseja su uso en mujeres con >250 CD4/ μ L y varones con >400 CD4/ μ L debido al mayor riesgo de hepatotoxicidad grave 364,366 . No obstante, en pacientes pre-tratados con CVP indetectable, generalmente en el contexto de una simplificación del TAR, ese mayor riesgo no existe $^{363,~488}$ lo que ha llevado a un cambio en la ficha técnica de NVP. Los IP potenciados que se usan actualmente y los FAR de otras familias tienen unas tasas de hepatotoxicidad más reducidas que los ITINN $^{489-493}$ (Tabla 12).

Trastornos neuropsiquiátricos

EFV produce diversos síntomas neuropsiquiátricos (mareo, somnolencia, insomnio, sueños vividos, confusión, ansiedad, despersonalización, etc.) en más del 50% de los casos, los cuales, aunque suelen remitir en las primeras 2-4 semanas, obligan a interrumpir el tratamiento en un porcentaje de los casos⁴⁹⁴ (Tabla 12). Se aconseja evitar este fármaco en pacientes con trastornos psiquiátricos mayores, aunque en un estudio aleatorizado el riesgo de depresión fue similar con EFV que con los IP⁴⁹⁵. Aunque otros FAR, como ZDV, pueden provocar síntomas neurológicos, son mucho menos frecuentes y predecibles que los de EFV.

Nefrotoxicidad

TDF puede inducir toxicidad renal en una pequeña proporción de pacientes. Su incidencia en estudios de cohortes⁴⁹⁶ es mayor que la observada en ensayos clínicos, en los que solamente se ha encontrado una reducción discreta (≈10%) y no progresiva del

filtrado glomerular^{244,497}. Esta complicación consiste en una disfunción tubular y se manifiesta como un síndrome de Fanconi acompañado de una disminución del filtrado glomerular⁴⁹⁸. Es más frecuente cuando coincide con otros factores de riesgo (insuficiencia renal previa o concomitante, diabetes, hipertensión arterial, fármacos nefrotóxicos, edad avanzada, bajo peso corporal y cifras bajas de linfocitos CD4⁺)^{244,247,498-500}. Su incidencia es mayor en combinación con IP/r y ddI⁵⁰¹. La nefrotoxicidad por TDF suele revertir al retirar el fármaco, aunque la reversión puede no ser completa⁵⁰². IDV y ATV, éste último con mucha menor frecuencia, producen nefrolitiasis por depósito tubular de cristales (Tabla 12).

Trastornos metabólicos y riesgo cardiovascular

Este grupo de trastornos incluye dislipemia, resistencia a la insulina y diabetes mellitus, todos los cuales son más frecuentes con los IP clásicos que con los IP potenciados actualmente utilizados y con los análogos de timidina que con el resto de ITIAN. Asimismo, todas estas anomalías son más comunes en los pacientes con redistribución de la grasa corporal.

La dislipemia caracterizada por aumento de los niveles plasmáticos de colesterol total, colesterol-LDL y, sobre todo, triglicéridos, es la anomalía metabólica que con mayor frecuencia se asocia al TAR. Aunque tradicionalmente se ha relacionado esta dislipemia con los IP, no todos ellos tienen el mismo impacto sobre los lípidos y otros FAR, especialmente los análogos de timidina, también inducen dislipemia^{285,307,434,503,504}. ABC o la formulación a dosis fija ABC/3TC aumentan los lípidos plasmáticos mientras que TDF o la formulación a dosis fija TDF/FTC los disminuye, aunque el cociente colesterol total/colesterol-HDL se mantiene por igual con ambos^{248,386}. Respecto a los IP, diversos ensayos clínicos han revelado que ATV, y FPV, sobre todo sin potenciar, tienen un mejor perfil lipídico; ATV/r, SQV/r (1500/100 BID ó 1500/100 QD) y DRV/r (600/100 BID u 800/100 QD) presentan perfiles intermedios; mientras que FPV/r (1400/100 QD o 700/100 BID), LPV/r (400/100 BID) y TPV/r (500/200 BID) tienen perfiles más desfavorables, sobre todo en lo que respecta a los triglicéridos^{266,304,306,308,375,376,387,435,436,443,505}, ⁵⁰⁶. Sin embargo cuando se compara el cociente CT/HDL en pacientes tratados con DRV/r, ATV/r o LPV/r no existen diferencias entre los distintos regímenes; se desconoce la importancia real de este hecho. El manejo de la dislipemia se comenta en la tabla 13^{384,507,508}

Los IP pueden disminuir la disponibilidad de la glucosa periférica y la secreción pancreática de insulina de forma aguda y pueden descompensar o desencadenar una diabetes en pacientes ya diabéticos o en personas predispuestas. En general, estas alteraciones no se mantienen a medio-largo plazo, por lo que deben existir mecanismos compensadores de las mismas. IDV y RTV a dosis plenas son los que se han relacionado con el desarrollo de resistencia a la insulina ⁵⁰⁹⁻⁵¹⁰, mientras que los demás IP parecen tener poco o ningún efecto clínicamente significativo sobre la homeostasis de la glucosa. La diabetes mellitus es menos común (Tabla 14) y su asociación con los IP no es constante en todos los estudios ^{508,511}. El tratamiento con análogos de la timidina (en particular d4T) y ddl, constituye un factor de riesgo para el desarrollo de resistencia a la insulina y diabetes mellitus ^{509,512}. Los inhibidores de la integrasa y los antagonistas del CCR5 tienen un perfil metabólico favorable ^{171,313}.

Al igual que en la población general, los factores de riesgo tradicionales son los que determinan principalmente el riesgo de desarrollar enfermedad cardiovascular en los pacientes infectados por el VIH-1. El efecto de la inflamación crónica de bajo grado y la activación inmune puede poseer un papel relevante en la patogenia de la enfermedad cardiovascular de los pacientes con infección VIH-1⁵¹³. La infección por VIH-1 no controlada y ciertos regímenes de TAR incrementan también dicho riesgo, aunque es muy probable que la contribución de estos últimos sea menor que la de los otros factores anteriormente mencionados. Es destacable la elevada frecuencia de factores de riesgo tradicionales modificables, lo que hace recomendable un manejo mas agresivo de los mismos⁵¹⁴. Aunque algunos estudios de cohortes han puesto de manifiesto que la duración del tratamiento con IP es un factor de riesgo independiente para el desarrollo de cardiopatía isquémica⁵¹⁵⁻⁵¹⁷, otros, en su mayoría retrospectivos y con poco tiempo de seguimiento, han obtenido resultados contrapuestos⁵¹⁷⁻⁵²⁰. El efecto sobre el riesgo cardiovascular de los IP como familia está mediado, al menos en parte, por la dislipemia asociada con el uso de estos fármacos. Además, un análisis de la cohorte D:A:D ha revelado que determinados IP (IDV, LPV/r) están relacionados con un mayor riesgo de infarto de miocardio, que no puede ser exclusivamente justificado por dicha anomalía metabólica⁵²¹. Este mismo estudio ha mostrado también que el uso reciente (últimos seis meses) de ABC o ddl se asocia con un mayor riesgo de infarto agudo de miocardio, especialmente en los pacientes que tienen un riesgo cardiovascular más elevado⁵²¹. No obstante, la relación entre ABC e infarto de miocardio o enfermedad cerebro-vascular es un motivo de controversia, pues, aunque ha sido constatada también en el estudio SMART²⁵⁶, en sendos estudios de casos y controles²⁵⁸ y en otros estudios observacionales⁵²², ni un análisis conjunto de 52 ensayos clínicos aleatorizados que incluían un brazo de tratamiento con ABC²⁶⁰ ni otros ensayos clínicos y estudios de cohorte han observado tal asociación 523,524 así como tampoco ninguna relación de ABC con potenciales mecanismos patogénicos que pudieran explicarla³⁸⁸. Dos meta-análisis han mostrado que no existe asociación epidemiológica entre el uso de ABC y el riesgo de infarto agudo de miocardio^{259,261}. La controversia existente pone de manifiesto que no es posible controlar de forma adecuada posibles sesgos en los estudios que han implicado a ABC o ddI y ponen en duda la contribución causal de los mencionados ITIAN en el desarrollo de la enfermedad cardiovascular.

Envejecimiento prematuro en la infección por el VIH

La eficacia del tratamiento ha permitido que muchos pacientes alcancen una supervivencia similar a la de la población general. De hecho, una elevada proporción de pacientes se encuentran en la actualidad alrededor de la edad de 50 años. Existen similitudes biológicas en términos de senescencia del sistema inmune de pacientes con infección por el VIH jóvenes y las observadas en el envejecimiento fisiológico⁵²⁵; por otra parte, se describen en pacientes VIH-positivos relativamente jóvenes enfermedades observadas con frecuencia en edades más avanzadas, como osteoporosis, deterioro cognitivo o sarcopenia⁵²⁶. Para estas enfermedades crónicas se han reconocido factores de riesgo similares a los de la población general pero sobrerrepresentados en pacientes VIH-positivos (como el tabaco) y otros propios de la infección por VIH, como la inmunodeficiencia (nadir de CD4), la inmunoactivación y la inflamación⁵²⁷. Están justifi-

cadas la monitorización y las intervenciones de prevención, al menos similares a las recomendadas para la población general.

Anomalías de la distribución de la grasa corporal

El síndrome de lipodistrofia se caracteriza por la presencia, combinada o no, de pérdida de grasa periférica (lipoatrofia) y de acúmulo de grasa perivisceral y/o en abdomen, mamas y cuello (lipoacumulación). La lipoatrofia, el efecto adverso más temido por los pacientes, se relaciona particularmente con los análogos de la timidina 243,244,247,384,434, ^{487,497,508}. Aunque en su aparición pueden influir múltiples factores, las pautas con d4T y ZDV (particularmente junto con IP clásicos y EFV) han evidenciado un mayor riesgo de lipoatrofia y su sustitución por ABC o TDF o por pautas sin ITIAN se asocia a una mejoría de la misma^{244,247,384,386,434,497,500,507,508} (Tabla 12). Los resultados de dos estudios comparativos entre EFV y LPV/r sugieren que el uso de EFV puede asociarse a una mayor pérdida de grasa subcutánea en comparación con LPV/r cuando el régimen incluye análogos de timidina^{327,528}. Esta diferencia no se observa en el estudio ACTG 5224s (subestudio metabólico del ACTG 5202) que compara EFV con ATV/r asociado a 2 ITIAN (ABC/3TC o FTC/TDF) en el que hay una ganancia global de grasa, pero hasta el 16,3% tiene una pérdida de grasa igual o superior al 10%, pero sin diferencias en función del tratamiento⁵²⁹. El que no se haya observado lipoatrofia en otros ensayos en los que EFV tampoco se asociaba a análogos de timidina 244,247,384,387,497, indica que EFV no parece estar directamente implicado en un mayor riesgo de lipoatrofia. En el seguimiento a 1 año del estudio MONARK (comentado antes) la presencia de lipoatrofia en la rama de monoterapia con LPV/r era del 5% frente al 27% en los pacientes en triple terapia⁵³⁰. En la mayoría de ensayos clínicos en pacientes que nunca habían recibido tratamiento llevados a cabo en los últimos años con NRTI no timidínicos y EFV, RAL, ATV/r o LPV/r, la incidencia de lipoatrofia, definida como la pérdida de >20% de la grasa en extremidades a las 48-96 semanas, por densitometría, es inferior al 10% de los casos^{309,531}. En la Tabla 15 se comentan la evaluación y opciones terapéuticas para las anomalías de la distribución de la grasa corporal⁵³²⁻⁵³⁵.

Osteoporosis y riesgo de fracturas óseas

La osteoporosis es más frecuente en pacientes con infección por el VIH-1, especialmente si reciben TAR^{536,537}. El número de fracturas también es superior en pacientes con infección VIH-1 que en sujetos de similares características sin esta infección. La base patogénica que justifica esta reducción en la densidad mineral ósea (DMO) es un incremento del remodelamiento óseo⁵³⁸, que condiciona una pérdida progresiva de la DMO. Los mecanismos que justifican esta reducción de la DMO son similares a los descritos en población general, entre los que se incluyen la edad, el tabaquismo, el bajo peso corporal, la insuficiencia renal, la diabetes, la hepatitis C, el uso de opiáceos, el consumo excesivo de alcohol o la menopausia. Algunos aspectos propios de la infección por VIH-1 como valores bajos de linfocitos CD4+⁵³⁹ o el efecto de algunos fármacos pueden influir en la mayor incidencia de fracturas. Los regímenes basados en TDF reducen la DMO en mayor medida a los que contienen ABC^{540,541} o que los regímenes sin ITIAN. Esta reducción de la DMO se ha documentado en varones no infectados por el VIH que toman TDF/FTC como profilaxis pre exposición en sus relaciones homose-

xuales^{542,543}. Se desconoce la importancia clínica real de la osteoporosis en los pacientes con infección VIH-1, pero dado que los pacientes irán envejeciendo, es razonable esperar un incremento significativo del número de fracturas óseas en las próximas décadas. No se conoce cuál es el mejor abordaje de este problema, la importancia de las escalas de predicción del riesgo de fracturas y el papel de los fármacos antirreabsortivos (bisfosfonatos, en particular). Es aconsejable influir en los factores de riesgo tradicionales, mantener una adecuada ingesta de calcio y unos niveles de vitamina D dentro de límites normales. Existen documentos específicos publicados por GESIDA/PNS referidos al manejo de los trastornos óseos en pacientes con infección por el VIH-1⁵⁴⁴.

Recomendaciones

- Se deben monitorizar la tolerancia y las reacciones adversas agudas del TAR durante las primeras 2-4 semanas, particularmente en aquellos pacientes que tengan comorbilidades predisponentes o tomen otros fármacos cuyas interacciones puedan tener consecuencias clínicas, y llevar a cabo una eventual modificación del tratamiento según la gravedad de la reacción adversa y el fármaco implicado. Para ello debe facilitarse el contacto entre el paciente y los profesionales (A-III)
- Se deben evitar fármacos que puedan reagudizar o empeorar enfermedades preexistentes (A-III)
- Se recomienda monitorizar la glucemia y los lípidos plasmáticos (colesterol total, colesterol-HDL, colesterol-LDL y triglicéridos) en ayunas en cada visita de control (A-II)
- Se recomienda calcular el riesgo cardiovascular al menos una vez al año (B-III)
- Se recomienda efectuar un estudio elemental de orina con proteinuria y calcular la tasa de filtrado glomerular renal (fórmula MDRD o Cockroft-Gault) en la primera visita y luego una vez al año si no hay factores de riesgo para el desarrollo de nefrotoxicidad o cada seis meses si éstos están presentes así como también antes de iniciar el TAR (B-III). En los pacientes que ya reciben TAR se recomienda efectuar este estudio en todas las revisiones (A-III), en especial si toman TDF (A-II). Si el filtrado glomerular es <50 mL/min o hay proteinuria manifiesta no se deben usar TDF ni IDV y se deben ajustar las dosis o intervalos de los ITIAN excepto ABC (A-III). No se recomienda usar TDF en aquellos pacientes en los que el deterioro de la función renal sea agudo o esté directamente relacionado con este fármaco (A-III)</p>
- En pacientes con riesgo de osteoporosis (mujeres postmenopáusicas, fumadores, bajo peso corporal, mayores de 50 años, déficit de vitamina D, hepatitis C, insuficiencia renal, diabetes, CD4 <250 células/μL o toma crónica de esteroides) se aconseja analizar la densidad mineral ósea mediante densitometría al inicio del tratamiento y posteriormente de manera periódica (B-III)
- Se aconseja realizar balance metabólico incluida 25-OH vitamina D en pacientes con sospecha de pérdida de masa ósea, osteoporosis y fracturas óseas por fragilidad (B-III)

8. INTERACCIONES FARMACOCINÉTICAS Y FARMACODINÁMICAS

Las interacciones de los fármacos antirretrovirales (FAR) entre sí o con otros medicamentos constituyen un problema de primera magnitud en el tratamiento de los pacientes con infección por el VIH-1 ya que sus consecuencias pueden tener una importante repercusión clínica⁵⁴⁵⁻⁵⁵¹. Las más relevantes suelen ser las interacciones farmacocinéticas, especialmente a nivel del metabolismo de los fármacos. Diferentes sistemas enzimáticos están implicados en dicho metabolismo y en todos ellos pueden producirse interacciones. Los FAR son sustratos de uno o varios de estos sistemas enzimáticos y a la vez pueden comportarse como inductores y/o inhibidores de cualquiera de ellos. La inducción del metabolismo producirá una disminución de las concentraciones del fármaco en el lugar de acción, pudiendo disminuir la eficacia del tratamiento, mientras que la inhibición ocasionará un aumento de las concentraciones con un mayor riesgo de toxicidad. En general, la inducción se produce por un aumento de la síntesis proteica (enzimas), siendo un proceso lento que requiere días o semanas, mientras que la inhibición suele ser competitiva y se produce de manera rápida, dependiendo de la concentración del inhibidor, pudiendo aparecer los efectos tóxicos de los sustratos en pocas horas. Dado que ambos mecanismos son diferentes e independientes, algunos fármacos pueden ser inhibidores e inductores al mismo tiempo, predominando uno u otro efecto.

El sistema metabólico más importante es el citocromo P450 (CYP) y su principal isoenzima el CYP3A4. Muchos FAR, especialmente los IP e ITINN, y muchos otros fármacos que a menudo reciben los pacientes con infección por el VIH-1 son inhibidores o inductores de diferentes isoenzimas de CYP. La potente inhibición enzimática que produce RTV se utiliza para potenciar la farmacocinética de otros IP (substratos de CYP3A4), logrando concentraciones plasmáticas más eficaces y menos susceptibles al efecto inductor de otros fármacos (p.e. ITINN) y al mismo tiempo pautas más simples, con menos restricciones dietéticas. Se están investigando nuevos potenciadores farmacocinéticos que carecen de eficacia antirretroviral, de los cuales el que se encuentra en fases más avanzadas de investigación es cobicistat (COBI). La potenciación ejercida sobre ATV y DRV con 150 mg/24h de COBI fue similar a la obtenida con 100 mg/24h de RTV. COBI se está desarrollando fundamentalmente como potenciador del nuevo inhibidor de la integrasa elvitegravir (EVG). La formulación QUAD contiene en un sólo comprimido EVG 150 mg/COBI 150 mg/FTC 200 mg y TDF 300 mg⁵⁵¹⁻⁵⁵⁶. COBI es sustrato del CYP3A4 y minoritariamente del 2D6. Asimismo, es inhibidor de CYP3A y CYP2D6 y de los transportadores: glicoproteína-P (P-gp), BCRP, OATP1B1 y OATP1B3. La asociación de QUAD con fármacos que sean sustratos de los anteriores enzimas y transportadores puede dar lugar a un aumento de sus concentraciones plasmáticas⁵⁵⁷.

Otra vía metabólica es la conjugación de los FAR o de sus metabolitos procedentes de la oxidación del fármaco por el CYP. Diversos FAR son inductores o inhibidores del complejo enzimático de las uridindifosfato-glucuroniltransferasas (UDPGT) (glucuronización). A menudo los inductores del CYP son también inductores de la UDPGT y los inhibidores del CYP son inhibidores del CYP son inductores de la glucuronización y viceversa. Así, por ejemplo, RTV y, en menor medi-

da, NFV inhiben varias subfamilias del citocromo P450 y son inductores de las UDPGT. La combinación TPV/r muestra un efecto inductor de la glucuronización. ATV inhibe ambos sistemas enzimáticos.

Cada vez están adquiriendo mayor protagonismo una serie de proteínas transportadoras transmembrana, tales como la glicoproteína-P (P-gp), capaces de alterar la biodisponibilidad de diversos FAR y su distribución por el organismo. Estas proteínas pueden ser inducidas o inhibidas por diversos fármacos. Habitualmente la inducción o la inhibición del CYP y de la P-gp van en el mismo sentido, pero al igual que sucede con la glucuronización ambos efectos pueden ser discordantes.

En las Tablas 5 a 9 se detallan las características farmacocinéticas y asociaciones contraindicadas de los diferentes FAR. No se han incluido todas las posibles interacciones con los FAR, dado que existen diversas páginas web dedicadas a esta finalidad, que pueden facilitar la búsqueda: www.interaccionesvih.com (en español)⁵⁴⁵ y www.hiv-druginteractions.org (en inglés)⁵⁴⁸. Debido a que la información científica relacionada con los FAR se renueva constantemente, se recomienda consultar también la ficha técnica de los fármacos y la información actualizada ofrecida por las distintas compañías farmacéuticas y las autoridades sanitarias. A continuación se detalla el metabolismo de los distintos FAR y su comportamiento inductor/inhibidor sobre las enzimas, que pueden ser útiles para predecir posibles interacciones cuando no se disponga de información.

- **ITIAN:** Tienen pocas interacciones metabólicas. ZDV y ABC se glucuronizan. 3TC, FTC, d4T y TDF se eliminan principalmente por vía renal y son poco susceptibles de padecer interacciones metabólicas relevantes. Se ha descrito aumento del riesgo de toxicidad renal al asociar TDF a algunos IP/r⁵⁵⁸⁻⁵⁶⁵.
- ITINN: NVP es metabolizada principalmente por el CYP3A4 y se comporta como inductor del CYP3A4 y del CYP2B6; EFV es sustrato de CYP2B6 y 3A4 y es fundamentalmente un inductor del CYP3A4, 2B6 y de la UGT1A1⁵⁶⁶. Existen discrepancias sobre su comportamiento frente al CYP2C19, dado que EFV ha demostrado *in vitro* un efecto inhibidor frente a CYP2C9 y 2C19, mientras que en voluntarios sanos se ha observado efecto inductor del CYP2C19⁵⁶⁷. ETR actúa como sustrato e inductor del CYP3A4 y como inhibidor débil del CYP2C9 y 2C19⁵⁶⁸⁻⁵⁷⁰. RPV es sustrato del CYP3A4 y, por tanto, los medicamentos inductores o inhibidores de CYP3A pueden afectar al aclaramiento de rilpivirina, no recomendándose su uso conjunto con éstos⁵⁷¹. A las dosis empleadas en terapéutica no se estima que RPV pueda tener efecto inductor o inhibidor clínicamente importante sobre otros fármacos eliminados mediante el citocromo P450⁵⁷¹.
- IP: RTV es sustrato de CYP3A4>2D6 y es un inhibidor potente del CYP3A4 y moderado del CYP2D6, y también tiene un efecto inductor de varios isoenzimas del CYP (1A2, 2B6, 2C8, 2C9, 2C19)⁵⁷², así como de la glucuronización; además es capaz de autoinducir su propio metabolismo. NFV es sustrato e inhibidor del CYP3A4 e inhibe de forma más débil CYP2C19, 2D6, 1A2 y 2B6; en cambio, es inductor de la glucuronización. IDV es sustrato e inhibidor del CYP3A4. SQV es sustrato e inhibidor débil del CYP3A4. FPV es sustrato e inhibidor del CYP3A4. LPV/r inhibe el CYP3A4; in vivo induce su propio metabolismo, los CYP2C9 y 2C19⁵⁷³ y la glucuronización. ATV es sustrato e inhibidor del CYP3A4 y de la UDPGT1A1 (enzima encargado de la glucuronización de la bilirrubina). TPV/r es sutrato del CYP3A4; in vivo y en estado

de equilibrio es un inductor de CYP2C9, CYP1A2 y de la glucuronización e inhibidor del CYP3A4 y 2D6⁵⁷⁴. Respecto a su efecto sobre la P-pg, los datos sugieren que el efecto neto de la combinación TPV/r en estado de equilibrio es de inducción leve de la P-gp. Debido al efecto antagónico de inhibición del CYP3A4 e inducción de la P-gp, es difícil predecir el efecto neto de TPV/r sobre fármacos que sean substratos de ambos.

- Inhibidores del correceptor CCR5: MVC es sustrato de CYP3A4, pero no es inhibidor ni inductor⁵⁷⁵. Los inhibidores e inductores de CYP3A4 alteran los parámetros farmacocinéticos de MVC, recomendándose cambios en su dosis (Tabla 8). En general se ajustarán las dosis como sigue: 150 mg BID cuando se administra con inhibidores del CYP3A4 como por ejemplo IP/r (con excepción de TPV/r y FPV/r); 600 mg BID cuando se administra con fármacos inductores como EFV o rifampicina (con excepción de NVP), en ausencia de inhibidores potentes, en cuya presencia predomina el efecto inhibidor y se administrarán 150 mg BID; 300 mg BID con otros fármacos (incluyendo TPV/r, FPV/r y NVP)⁵⁷⁵⁻⁵⁷⁷.
- Inhibidores de la integrasa. RAL no es sustrato ni influye en la actividad del CYP. Se metaboliza por glucuronización, sin inhibir ni inducir esta enzima. Los inhibidores e inductores de UGT1A1 modifican los parámetros farmacocinéticos de RAL, pero en la mayoría de los casos no se recomienda cambio en su dosificación por su amplio margen terapéutico. *In vivo* puede existir cierta inhibición de la UGT1A1 basándose en los efectos observados en la glucuronización de la bilirrubina. Sin embargo, parece improbable que la magnitud de los efectos tenga como resultado interacciones farmacológicas clínicamente importantes (Tabla 8)⁵⁷⁹⁻⁵⁸³. EVG es sustrato mayoritario del CYP3A4 y minoritario de UGT1A1/3. Los inductores del CYP3A4 pueden reducir su eficacia antirretroviral (asociación no recomendada), mientras que los inhibidores del CYP3A4 pueden aumentar los niveles plasmáticos de EVG/COBI. EVG es inductor leve del CYP2C9⁵⁵⁷. EVG se emplea potenciado con COBI en la asociación QUAD, por lo que es importante considerar el efecto de COBI (vease el segundo párrafo de este capítulo).
- Inhibidores de la fusión: ENF se metaboliza a través de las vías catabólicas de las proteínas y aminoácidos. No es sustrato ni influye en la actividad de ninguno de los sistemas metabólicos de los otros FAR. No es susceptible de presentar interacciones metabólicas relevantes.

En la tabla 16 se especifican los ajustes de dosis de los FAR en caso de insuficiencia renal, hemodiálisis o diálisis peritoneal o insuficiencia hepática⁵⁸³⁻⁶³⁶.

Algunas interacciones farmacodinámicas son de interés, como el incremento del riesgo de toxicidad mitocondrial que se produce al asociar ribavirina con ddl. La incidencia de ésta se quintuplicó en comparación con el uso de ribavirina y otros ITIAN. Tres de los 23 casos comunicados a la FDA fueron mortales, por lo que se recomienda evitar esta asociación. En lo posible se evitará también el uso simultáneo de ribavirina con ZDV o d4T por toxicidad hematológica o mitocondrial. Este aspecto es especialmente importante con el uso de los nuevos inhibidores de la proteasa del VHC boceprevir y telaprevir, con los que aumenta la incidencia de anemia.

Se han descrito interacciones importantes entre los inhibidores de la proteasa del VHC y los FAR. Existe una web específica donde pueden consultarse las interacciones de los

fármacos para el tratamiento de la hepatitis C: http://www.hep-druginteractions.org/⁶³⁷ así como un documento elaborado por la Agencia Española del Medicamento en el que participaron un grupo de expertos y establece una serie de recomendaciones sobre el empleo de antirretrovirales en pacientes tratados con boceprevir y telaprevir⁶³⁸.

Recomendaciones

- Se deben reseñar en la historia clínica todos los medicamentos, productos naturales y medicinas alternativas, para evaluar posibles interacciones (B-III)
- Se deben tener en cuenta las contraindicaciones y realizar los ajustes de dosis correspondientes cuando sea necesario (B-III)
- Se debe considerar la monitorización de los niveles plasmáticos cuando se administren dos o más fármacos con posibles interacciones farmacocinéticas relevantes para evitar toxicidad o ineficacia terapéutica (B-II)

9. SITUACIONES ESPECIALES EN EL TRATAMIENTO ANTIRRETROVIRAL

9. 1. HEPATOPATIA CRONICA

La hepatopatía crónica por virus de la hepatitis es la comorbilidad más relevante de las que presentan los sujetos infectados por el VIH en España, por su frecuencia, por la rápida progresión a enfermedad hepática terminal que experimenta y por aumentar la hepatotoxicidad del TAR.

9.1.1. Infección VIH, TAR e historia natural de la hepatitis crónica por VHC y VHB

En pacientes coinfectados por VIH-1 y virus hepatotropos la buena situación inmunológica, el control de la replicación viral del VIH-1 y el recibir TAR se asocian con un mejor pronóstico global, menor velocidad de progresión de la enfermedad hepática y menor riesgo de complicaciones y muerte por causa hepática 639-645. Por ello, aún en ausencia de ensayos clínicos que valoren el impacto del TAR en la evolución de la fibrosis hepática en pacientes coinfectados, las evidencias anteriormente descritas respaldan el control precoz de la replicación del VIH-1 y el mantenimiento de una buena situación inmunológica en estos pacientes.

Recomendaciones

■ En pacientes coinfectados por el VHC se debe recomendar el inicio de TAR, independientemente de la cifra de linfocitos CD4⁺, individualizando la decisión en función de variables virológicas, histológicas y de motivación del paciente (B-II)

- En pacientes coinfectados por el VHB con criterios de tratamiento de la hepatitis, se debe iniciar un TAR que contenga tenofovir, independientemente de la cifra de linfocitos CD4⁺ (B-II)
- En pacientes sin necesidad de tratamiento frente al VHB, si se inicia el TAR se recomienda que éste incluya tenofovir (B-II)

9. 1. 2. Toxicidad hepática de los FAR en pacientes con hepatopatía

La toxicidad hepática se ha descrito con todas las familias de FAR, aunque con incidencia y mecanismos patogénicos diferentes⁶⁴⁶⁻⁶⁴⁹. La incidencia real es difícil de estimar por problemas metodológicos⁶⁵⁰. En primer lugar el diagnóstico de toxicidad hepática por un fármaco implica una relación temporal y la exclusión de otras causas de elevación de enzimas hepáticas (EEH) y estos criterios no se cumplen en la mayoría de pacientes coinfectados por VIH-1 y VHC/VHB con EEH. En segundo lugar, la definición de los distintos grados de hepatotoxicidad no es uniforme. En los ensayos clínicos se suele definir como hepatotoxicidad grave a una elevación mayor de 5 veces el límite superior de la normalidad de ALT y/o AST⁶⁵¹. Sin embargo, esta definición está limitada al no considerar el fallo hepático, no tener en cuenta la hepatotoxicidad colestásica o mixta y ser más sensible para detectar hepatotoxicidad en pacientes con valores basales de transaminasas elevados. Para resolver este último problema se acepta considerar EEH grave asintomática a los incrementos de ALT y/o AST superiores a 3,5 veces la cifra basal para los pacientes con de niveles elevados transaminasa basales⁶⁵².

No está completamente aclarado si la presencia de fibrosis significativa (≥F2), avanzada (≥F3) o cirrosis aumenta el riesgo de toxicidad hepática por TAR, y es posible que ello dependa de los FAR usados. Así, mientras en un estudio de cohortes la frecuencia de hipertransaminemia grave en pacientes tratados con NVP o EFV fue significativamente mayor en los que presentaban fibrosis avanzada⁶⁵³, en otras cohortes y en estudios observacionales específicos con FPV, ATV o RAL, e incluso con EFV⁶⁵⁴, este hecho no se ha confirmado^{613,655-657}.

En pacientes coinfectados por VIH-1 y VHC la consecución de respuesta viral sostenida con el tratamiento de la hepatitis C reduce de modo notable el riesgo de toxicidad hepática 658.

Recomendaciones

- No se contraindica ningún FAR en caso de coinfección con VHC o VHB si la función hepática está preservada (B-II), pero se debe priorizar el uso de los que tienen el menor potencial de hepatotoxicidad (C-III)
- Se debe retirar el TAR en caso de hepatitis sintomática, y en la asintomática si se sospecha que se debe a toxicidad mitocondrial o a una reacción de hipersensibilidad, o si existe hipertransaminemia de grado 4 (B-III)
- En caso de hepatitis asintomática con hipertransaminemia de grado 3, se debe considerar la suspensión del TAR en función de la situación clínica, inmunológica y

virológica, de los fármacos utilizados y de la historia previa de exposición a FAR (B-III)

9. 1. 3. Uso de antirretrovirales en pacientes con hepatopatía

La hepatopatía crónica puede alterar el metabolismo y la biodisponibilidad de los FAR, con incremento de toxicidad o alteración de la actividad antiviral. La hepatitis crónica sin insuficiencia hepatocelular es una situación muy frecuente y la experiencia acumulada sugiere que se pueden usar los FAR a las dosis habituales y que su eficacia y seguridad no están comprometidas. Sin embargo, en la insuficiencia hepatocelular se reduce el metabolismo de fármacos por la vía del citocromo P450 y la glucuronoconjugación. Los niveles plasmáticos de EFV aumentan en pacientes cirróticos en mayor medida que los de los inhibidores de la proteasa^{586,659}, por lo que, si se usa EFV en pacientes con insuficiencia hepatocelular, debería hacerse con monitorización de los niveles del fármaco, para evitar la sobrexposición al mismo o, al menos, con vigilancia estrecha de efectos adversos.

En el caso de los IP/r solamente se disponen de datos farmacocinéticos del FPV/r cuya dosificación se ha estudiado en pacientes con Child-Pugh A, B y C. En el caso de la insuficiencia hepática moderada o avanzada la dosis de FPV o RTV debe disminuirse o aumentar el intervalo entre dosis (Tabla 16) aunque las diferencias individuales aconsejan llevar un estrecho control para prevenir y evitar efectos adversos o fracaso virológico⁶⁶⁰. Se estima que esta misma conducta debe seguirse con otros IP/r.

Un estudio con un número reducido de pacientes demostró que, en sujetos con cirrosis hepática clase C de Child, la administración de RAL se asoció a niveles plasmáticos del fármaco más elevados que los que se observaron en los controles⁶⁶¹. No obstante, la magnitud de esta elevación es similar a la que se observa en pacientes que reciben RAL junto a ATV⁶⁶¹.

No hay datos sobre el uso del TAR en casos de hepatitis aguda.

Recomendaciones

- Se debe evaluar el grado de fibrosis hepática y el grado de función hepática en todos los pacientes coinfectados por virus hepatotropos ya que pueden condicionar la elección del TAR, las dosis prescritas de los FAR y la estrategia de monitorización de su eficacia y toxicidad (C-III)
- Los FAR se pueden usar a las dosis habituales en caso de hepatitis crónica sin insuficiencia hepatocelular o con insuficiencia hepatocelular leve (Child A), aumentando la vigilancia por el mayor riesgo de toxicidad (B-II)
- En caso de hepatopatía crónica con signos de insuficiencia hepatocelular se deberá ajustar la dosis de los fármacos, idealmente mediante la determinación de niveles plasmáticos, o en su ausencia, mediante las recomendaciones de la Tabla 16 (B-III). El margen terapéutico de los IP es superior al de EFV en este escenario (B-II). FPV/r,

en dosis ajustadas al estadio C de Child, y RAL, sin necesidad de ajuste de dosis, pueden considerarse las opciones preferentes en estos pacientes (B-II)

 En caso de hepatitis aguda grave debe interrumpirse el TAR y reintroducirlo una vez superado el problema (B-III)

9. 1. 4. TAR en pacientes en tratamiento de la hepatitis por virus C

El tratamiento recomendado de la hepatitis crónica por VHC de genotipos 2, 3 y 4 en pacientes coinfectados por el VIH-1 sigue siendo aún la combinación de interferón pegilado y ribavirina 662-666. En cambio, para la hepatitis crónica por VHC de genotipo 1 el nuevo estándar de tratamiento es la triple terapia basada en boceprevir o telaprevir 667. Actualmente existe en España la posibilidad de tratar con terapia triple, incluyendo los referidos inhibidores de la proteasa del VHC telaprevir y boceprevir, a enfermos infectados por el VHC con genotipo 1 que tienen fibrosis avanzada 638. Los ensayos en fase II con estos fármacos han deparado resultados muy superiores a los de la biterapia con interferón pegilado y ribavirina 668, 669.

Por otro lado, se han descrito brotes de hepatitis aguda C, que afectan esencialmente a HSH infectados por el VIH-1⁶⁷⁰⁻⁶⁷², para cuyo tratamiento se recomienda interferón pegilado junto con ribavirina ajustada a peso, en caso de que la viremia C persista detectable a las 12 semanas del diagnóstico⁶⁷²⁻⁶⁷⁶. Igualmente, una caída de la viremia menor de dos unidades logarítmicas a las cuatro semanas del diagnóstico tiene un alto valor predictivo positivo de evolución a la cronicidad, por lo que puede considerarse un indicador para iniciar el tratamiento de la hepatitis aguda C⁶⁷⁷.

Un aspecto importante, cuando se inicia tratamiento con interferón y ribavirina en pacientes coinfectados por el VIH-1, es la selección de los FAR. Estos pueden contribuir al incremento del riesgo de efectos adversos por la vía de toxicidades aditivas o sinérgicas, como por ejemplo anemia y/o neutropenia con ZDV⁶⁷⁸, aumento de la toxicidad mitocondrial con ddl y d4T^{679, 680} o pancreatitis, acidosis láctica y descompensación de la cirrosis con ddl⁶⁷⁹⁻⁶⁸¹. Un segundo mecanismo potencial por el que los ITIAN pueden influir el tratamiento de la hepatitis C es por la vía de interferencia con la acción de la ribavirina. En este contexto, en algunos estudios se ha observado que el uso de ABC se asocia a una menor respuesta al tratamiento con interferón pegilado y ribavirina ⁶⁸²⁻⁶⁸⁴, hallazgo que no se ha confirmado en otros trabajos ⁶⁸⁵⁻⁶⁸⁷.

El uso de EFV concomitantemente con interferón pegilado aumenta la frecuencia de efectos adversos del SNC, probablemente por adición de toxicidades, aun cuando no compromete la eficacia del tratamiento de la hepatitis C⁶⁸⁸. Por ello, si es preciso usar simultáneamente estos dos fármacos, se debe vigilar especialmente la aparición de estos efectos adversos.

Por otra parte, se ha comunicado que una sustancial proporción de pacientes en tratamiento estable con ATV experimentan hiperbilirrubinemia e ictericia tras el inicio de tratamiento para la hepatitis C. Este hecho podría ser debido al incremento de bilirrubina asociado a la hemolisis por ribavirina y al compromiso del normal aclaramiento de bilirrubina debido a la inhibición competitiva de ATV sobre el sistema de la UDP glucuronil-transferasa⁶⁸⁹. Por último en pacientes infectados por el VHC de genotipos 1 y 4

el tratamiento con ATV se ha asociado con una mayor carga viral basal del VHC. Sin embargo no se conoce la trascendencia clínica de este hallazgo⁶⁹⁰.

Los inhibidores de la proteasa del VHC se eliminan también por la vía del citocromo P-450. Debido a ello, pueden interaccionar tanto con los ITINN como con los IP/r. Estudios farmacocinéticos han demostrado que EFV reduce las concentraciones plasmáticas de telaprevir, pero si este fármaco se administra a dosis de 1.125 mg/8h se consiguen concentraciones plasmáticas adecuadas de ambos fármacos. La administración de telaprevir reduce de forma significativa los niveles plasmáticos de DRV, FPV y LPV potenciados y, a su vez, DRV y FPV potenciados causan una disminución de los niveles plasmáticos de telaprevir que pueden comprometer su eficacia. Por el contrario, cuando se administran simultáneamente telaprevir y TDF o ATV/r, no se producen alteraciones significativas de la farmacocinética de ninguna de estos FAR⁶⁹¹, lo que permite su coadministración sin ajuste de dosis, si bien, debido a que telaprevir produce un cierto incremento de las concentraciones de ATV, podría haber una mayor incidencia de hiperbilirrubinemia o que ésta fuera más intensa cuando se administran conjuntamente los dos fármacos. No existen interacciones clínicamente significativas entre telaprevir y ETR. La administración conjunta de 750 mg/8 h de telaprevir y de 25 mg/día de RPV a 16 voluntarios sanos mostró un incremento de la exposición a RPV, con un incremento del 50% en la C_{max} y del 80% en al ABC. La exposición a telaprevir no sufrió modificaciones significativas por la asociación con RPV⁶⁹². Se ha observado prolongación del intervalo QT con cualquier dosis de RPV, aunque una prolongación significativa, con riesgo de torsade de pointes solo se produce con dosis de 75 mg/día o más. Kakuda y cols., consideran que el incremento de exposición a RPV al asociarse a telaprevir no es clínicamente significativo y que carece de relevancia desde el punto de vista del riesgo de prolongación del intervalo QT. En consecuencia no recomiendan ajustar las dosis cuando se administra RPV y telaprevir, lo cual tampoco se incluye en la ficha técnica de RPV. Sin embargo, hay que tener en cuenta que muchos de los estudios farmacocinéticos están realizados con un número pequeño de casos, voluntarios sanos o pacientes muy seleccionados, donde el significado clínico de la prolongación del intervalo QT es difícil de establecer. Por tanto, el uso de RPV en situaciones que aumenta su exposición, como en el caso de la administración con telaprevir, debe realizarse con precaución, tanto más cuando se administren conjuntamente otros fármacos que también incrementan el intervalo QT. En este sentido debe tenerse una especial precaución en los pacientes coinfectados por VIH y VHC que reciben tratamiento sustitutivo con metadona.

La administración de RTV no aumenta de forma significativa los niveles de boceprevir, mientras que cuando se dan EFV y boceprevir juntos, se produce una reducción de los niveles valle de este último que podría comprometer su eficacia. Los datos farmacocinéticos disponibles tampoco sugieren ninguna interacción significativa de boceprevir con ETR⁶⁹³. Cuando se administran simultáneamente ETR y boceprevir, las concentraciones de ETR descienden alrededor del 25%. Aunque el significado clínico de esta interacción no está totalmente aclarado, en principio boceprevir y ETR podrían administrarse conjuntamente. LPV y DRV potenciados presentan una interacción bidireccional con boceprevir, de tal modo que se reducen de forma significativa las concentraciones plasmáticas, tanto de boceprevir, como de estos IP del VIH. Cuando boceprevir se coadministra con ATV, los niveles plasmáticos de boceprevir no se modifican de

modo relevante, pero la concentración valle de ATV cae un 49%⁶⁹⁴. Sin embargo, en el estudio P05411 los pacientes tratados con terapia triple del VHC que incluía boceprevir, y, a la vez, un IP del VIH, respondieron igual que los que recibieron RAL y en ellos no hubo más repuntes de viremia VIH⁶⁹⁵. Por ello, es necesario más información acerca del significado clínico de las interacciones antes mencionadas.

Debido a las peculiares vías de metabolización de RAL, cuando este FAR y telaprevir o boceprevir son administrados a un mismo paciente, no se producen modificaciones de las concentraciones plasmáticas de ninguno de dichos fármacos que comprometan su eficacia o su seguridad^{696,697}.

Recomendaciones

- El TAR no debe iniciarse simultáneamente con el tratamiento del VHC (B-III)
- Cuando se traten simultáneamente el VIH-1 y el VHC, debe realizarse un seguimiento estrecho del paciente para detectar reacciones adversas (B-III)
- No se debe asociar ribavirina con ddl (A-I)
- Se evitará el uso simultáneo de ribavirina y ZDV (A-I)
- Si se usan simultáneamente interferón pegilado y EFV, debe vigilarse estrechamente la aparición de efectos adversos del sistema nervioso central (B-III)
- Si telaprevir se administra a un paciente que requiere TAR, se podrá administrar, sin riesgo de interacciones significativas con TDF, ABC, 3TC, FTC, ATV/r, RAL, ETR, RPV (con monitorización del intervalo QT y aumentando la vigilancia de los niveles plasmáticos de bilirrubina) o EFV, aunque en este último caso se debe aumentar la dosis de telaprevir a 1.125 mg/8h (B-I)
- En caso de iniciarse tratamiento con boceprevir en un paciente que requiere a la vez TAR, pueden administrarse TDF, ABC, 3TC, FTC, RAL y ETR (A-I). En pacientes con CVP del VIH indetectable, sin antecedentes de fallos virológicos a IP del VIH, y en los que no existe otra opción terapéutica, puede administrarse también ATV/r (C-I)

9. 5. Tratamiento de la hepatitis crónica B en pacientes coinfectados

Los FAR activos frente al VIH-1 y al VHB son 3TC, FTC y TDF⁶⁹⁸⁻⁷⁰¹. Si en pacientes coinfectados por el VHB se retirara alguno de tales fármacos de un TAR que hubiese fracasado, puede aparecer un rebrote del VHB, con el consiguiente daño hepatocelular⁷⁰². El tratamiento de la hepatitis crónica B con 3TC o FTC en monoterapia facilita la aparición de resistencias al VIH-1^{701,703,704}, por lo que deben usarse siempre en combinación. El uso de 3TC o FTC como único fármaco activo frente al VHB dentro de la combinación de FAR proporciona escaso beneficio clínico sobre la hepatopatía, por lo que se aconseja el uso de TDF siempre que sea posible⁷⁰⁵. Entecavir, fármaco activo frente al VHB, ha demostrado actividad frente a VIH-1 y capacidad para inducir igualmente mutaciones, como la M184V⁷⁰⁶.

Recomendaciones

- Se recomienda iniciar el TAR usando la asociación de TDF + FTC (o 3TC) como ITIAN en los pacientes coinfectados que requieran tratamiento del VIH-1 o del VHB (A-III)
- Si se requiere tratamiento del VHB y se decide no tratar el VIH-1, se recomienda usar fármacos que no induzcan resistencias al VIH-1 (A-III)
- No debe usarse entecavir en pacientes infectados por el VIH-1, salvo que su replicación esté controlada con otros fármacos (B-II)
- En pacientes coinfectados en los que por cualquier motivo se suspenda 3TC, FTC o
 TDF, se debe incluir en el TAR otro fármaco con actividad anti-VHB (A-II)

9. 2. TAR EN PACIENTES CON INSUFICIENCIA RENAL CRÓNICA

Los pacientes infectados por el VIH-1 presentan un mayor riesgo de enfermedad renal crónica (ERC) que la población general 707-713. Entre las causas que pueden motivar este hecho se encuentran la propia infección por el VIH-1, las enfermedades asociadas, el tratamiento de éstas y el propio tratamiento antirretroviral 714-716. Además, debido al progresivo envejecimiento de la población infectada por el VIH-1 la frecuencia de enfermedades comunes relacionadas con el desarrollo de enfermedad renal crónica ha aumentado en la misma. Por todo ello, se prevé que a medio y largo plazo la frecuencia de nefropatía se incremente entre pacientes infectados por el VIH-1715,716. En los pacientes con ERC es esencial prevenir que ésta progrese, evitando la utilización de fármacos potencialmente nefrotóxicos y efectuando, siempre que ello sea necesario, un ajuste de dosis de los mismos. El ajuste de las dosis de los FAR tiene una gran importancia clínica, pues su omisión puede originar complicaciones e interacciones farmacológicas potencialmente graves 717. Diversos estudios han demostrado que los errores en la dosificación de FAR en caso de ERC son más frecuentes de lo esperado 718,719.

Los ITIAN, exceptuando ABC, cuyo metabolismo es casi exclusivamente hepático, requieren ajustes de dosis en la insuficiencia renal, ya que su excreción se realiza por esta vía (tabla 16). Sin embargo tanto los ITINN como los IP se metabolizan por vía hepática, por lo cual no precisan ajuste de dosis en caso de ERC (tabla 16). Los parámetros farmacocinéticos de RAL son muy similares en individuos sanos y en pacientes con ERC, por lo cual tampoco es necesario ajustar su dosis. Los datos disponibles sobre MVC en la ERC son muy escasos; sin embargo, dado que fundamentalmente se metaboliza por vía hepática, es muy probable que no requiera modificación de dosis en la ERC en ausencia de coadministración con inhibidores potentes del CYP3A4, como los IP (Tabla 16). No es necesario ajustar la dosis de ENF en caso de insuficiencia renal.

En la Tabla 16 se detalla los ajustes de dosis de cada uno de los FAR en caso de hemodiálisis o diálisis peritoneal. La creatinina plasmática es un marcador poco sensible para detectar descensos ligero-moderados del filtrado glomerular (FG) y consecuentemente estadios precoces de enfermedad renal⁷²⁰. Por ello, reducciones leves o moderadas del FG pueden pasar desapercibidas si utilizamos como única herramienta para su cribado la determinación de la creatinina plasmática. En esta situación son de gran utilidad la estimación del FG mediante diversas fórmulas como la MDRD (Modified Diet for Renal Disease Group)⁷²⁰, de Cockcroft-Gault⁷²¹ o la CKD-EPI (*Chronic Kidney Disease Epidemiology Collaboration*)⁷²².

Ecuaciones utilizadas para la estimación del filtrado glomerular 718,720,721:

Cockcroft-Gault

FG (mL/min) = [140 – edad (años) x peso (kg) x 0,85 (si mujer)/CrP (mg/dL) x 72 Calculadora automática en: http://nephron.org/cgi-bin/CGSI.cgi

MDRD (Modification of Diet for Renal Diseases)

FG (mL/min/1,73 m2 = $186 \times [CrP (mg/dL)]-1,154 \times [edad (años)]-0,203 \times 0,742 (si mujer) \times 1,212 (si raza negra)$

Calculadora automática en: http://nephron.org/cgi-bin/MDRD GFR/cgi

CKD-EP I (Chronic Kidney Disease Epidemiology Collaboration)

FG (mL/min) = $141 \times min$ (CrP/ κ , 1) $\alpha \times max$ (CrP/ κ , 1)-1.209 \times 0.993edad \times 1.018 (si mujer) x 1,159 (si raza negra)

Calculadora automática en: http://qxmd.com/calculate-online/nephrology/ckd-epi-egfr

FG: filtrado glomerular. CrP: creatinina plasmática. Min: valor mínimo de CrP/k ó 1. Max: valor máximo de CrP ó 1. α : -0,329 para mujeres y -0,411 para varones. κ : 0,7 para mujeres y 0,9 para varones.

Recomendaciones

- En pacientes infectados por el VIH-1 con ERC es esencial realizar un ajuste de dosis de los FAR pues su omisión puede originar complicaciones e interacciones farmacológicas potencialmente graves (B-I)
- Los IP, ITINN y RAL no precisan ajuste de dosis (A-I)

9. 3. TAR EN PACIENTES CON TUBERCULOSIS

Recientemente GeSIDA junto con la SPNS han elaborado un documento de consenso sobre TAR en pacientes con TB en el que se analiza con detalle cuándo debe comenzarse el TAR en los pacientes infectados por el VIH con TB activa, qué regímenes de TAR deben utilizarse en tales casos y el síndrome inflamatorio de reconstitución inmune que pueden presentar tras el inicio del TAR los mencionados pacientes que tengan una inmunodeficiencia celular profunda⁷²³. Por ello, solo se exponen a continuación las

recomendaciones correspondientes a los temas anteriormente señalados y se remite al mencionado documento específico a quienes necesiten o deseen ampliar la información al respecto.

9.3.1. Cuándo comenzar el TAR en pacientes infectados por el VIH con tuberculosis activa

Recomendaciones:

- En pacientes infectados por el VIH con TB, cualquiera que sea su recuento de linfocitos CD4⁺, se debe iniciar el TAR durante el tratamiento de la TB ya que reduce el riesgo de muerte (A-I)
- En pacientes infectados por el VIH con TB y cifras de linfocitos CD4⁺ inferiores a 50 células/μL se debe iniciar el TAR a las dos semanas del tratamiento de la TB y una vez comprobada la buena tolerancia al tratamiento antituberculoso, ya que ello reduce el riesgo de muerte y el desarrollo de sida (A-I)
- En pacientes infectados por el VIH con TB y cifras de linfocitos CD4⁺ superiores a 50 células/μL se debe iniciar el TAR una vez finalizada la fase intensiva del tratamiento de la tuberculosis, ya que ello reduce el riesgo de efectos adversos y de SIRI sin comprometer la supervivencia (A-I)
- Aunque se desconoce el momento óptimo de inicio del TAR en pacientes con meningitis tuberculosa, se recomienda utilizar en este contexto los criterios anteriores. (A-III)

9.3.2. Qué régimen de TAR utilizar

Recomendaciones:

- En pacientes infectados por el VIH con TB en tratamiento estándar se recomienda como régimen de TAR de uso preferente la combinación de TDF/FTC (a dosis habituales) o de ABC/3TC (a dosis habituales) + EFV a dosis de 600 mg/día (A-I)
- Se recomiendan como regímenes alternativos por orden de preferencia: 1º)
 TDF/FTC o ABC/3TC + NVP (a dosis habituales); 2º) TDF/FTC o ABC/3TC + RAL a dosis de 800 mg/12 h (A-II)
- Se recomienda que otros regímenes de TAR, como TDF/FTC o ABC/3TC + MVC
 (a dosis de 600 mg/12 h) solo sean usados en situaciones especiales en las que no sea posible utilizar ninguno de los regímenes anteriores (C-III)

9.3.3. Síndrome inflamatorio de reconstitución inmune (SIRI) en pacientes infectados por el VIH con tuberculosis y TAR

Recomendaciones:

- En presencia de SIRI no debe discontinuarse ni el tratamiento antituberculoso ni el TAR (A-III)
- Las formas clínicas leves o moderadas de SIRI deben tratarse con antiinflamatorios no esteroideos (A-III)
- El tratamiento con corticosteroides del SIRI con manifestaciones clínicas moderadas-graves mejora los síntomas sin provocar efectos adversos añadidos (A-II)#

9. 4. INFECCIÓN POR EL VIH-2

El virus de la inmunodeficiencia humana tipo 2 (VIH-2) posee una organización genómica similar al VIH-1, aunque presenta respecto a éste diferencias estructurales que van a influir de forma significativa en su patogenicidad y sensibilidad a los fármacos antirretrovirales⁷²⁴.

No existen ensayos clínicos controlados que evalúen el momento óptimo para el inicio del TAR, ni la elección del régimen de TAR mas apropiado para la terapia inicial o siguientes líneas de tratamiento frente al VIH-2. Pese a ello, parece razonable asumir que los objetivos del TAR en pacientes infectados por el VIH-2 son similares a los descritos en la infección por el VIH-1.

El VIH-2 presenta diferencias importantes respecto al VIH-1 en su perfil de sensibilidades a los FAR. El VIH-2 presenta resistencia intrínseca a los ITINN⁷²⁵, por lo que estos FAR están contraindicados. El VIH-2 es sensible a los ITIAN, aunque su barrera genética frente a ellos es mas baja que para el VIH-1^{726,727}. Por otro lado el VIH-2 presenta una sensibilidad variable frente a los IP/r, siendo LPV/r, SQV/r y DRV/r los más activos⁷²⁸⁻⁷³¹. RAL es activo frente al VIH-2⁷³². Sin embargo, el uso de MVC en el tratamiento de la infección por el VIH-2 está limitado por la no disponibilidad de una adecuada prueba de tropismo y por la capacidad del VIH-2 para utilizar, además del CCR5 y el CXCR4, otros correceptores distintos⁷³³. Por último, el VIH 2 presenta resistencia intrínseca a ENF⁷³⁴.

Diversas circunstancias provocan que la toma de decisiones respecto al TAR en pacientes infectados por el VIH-2 tenga una mayor dificultad. En primer lugar la historia natural del VIH-2 difiere de la del VIH-1 y, en ausencia de ensayos clínicos controlados, carecemos de las evidencias necesarias que permitan identificar el momento óptimo de inicio del TAR en estos pacientes. En segundo lugar los algoritmos genotípicos utilizados para predecir resistencias a FAR en la infección por el VIH-1 pueden no ser aplicables al VIH-2. Por último una dificultad añadida es que para el seguimiento de los pa-

cientes no disponemos en el momento actual de una prueba comercial que permita medir la carga viral del VIH-2.

Pese a que no disponemos de ensayos clínicos aleatorizados que permitan identificar regímenes de uso preferencial o alternativos en TAR de inicio en el escenario de la infección por VIH-2, por los motivos anteriormente expresados y hasta no disponer de evidencias, parece razonable recomendar como TAR de inicio preferente en pacientes infectados por el VIH-2 la combinación de 2 ITIAN y un IP/r.

Recomendaciones

- El TAR de inicio de uso preferente en la infección por el VIH-2 es la combinación de 2 ITIAN más un IP/r (C-III)
- El uso de regímenes de TAR basados en ITINN, MVC o ENF están contraindicados en el tratamiento de la infección por VIH-2 (B-III)

10. TAR EN LA MUJER, EN EL EMBARAZO Y COMO PREVENCIÓN DE LA TRANSMISIÓN MATERNO-FETAL

Más del 50% de la población mundial infectada por el VIH-1 son mujeres. En Europa las nuevas infecciones están aumentando en la población femenina, sobre todo por vía sexual y en los estratos sociales más desfavorecidos, como en los inmigrantes⁷³⁵. En España, datos de la cohorte CoRis, muestran una discreta disminución (24,3%) en los nuevos casos, aunque confirman cambios en los patrones de infección, afectando especialmente a la población inmigrante. Según datos recientes, el porcentaje de nuevos casos entre mujeres inmigrantes en España alcanza el 43%⁷³⁵ y en los casos de transmisión heterosexual las mujeres siguen incrementando su proporción siempre superior a la masculina⁷³⁷.

Las incógnitas por resolver son muchas dado que las mujeres no han sido incorporadas a los ensayos clínicos hasta 1993 y aún en los más recientes su número no sobrepasa el 30%. Las diferencias biológicas y de composición corporal, por citar algunas, podrían conllevar diferencias farmacocinéticas⁷³⁸ que implicasen cambios tanto en la evolución de la enfermedad, como en la respuesta a la terapia⁷³⁹ o en las toxicidades farmacológicas que no han sido suficientemente exploradas^{740,741}.

El VIH-1 puede afectar a la mujer en todas y cada una de las etapas de su vida: infancia, adolescencia, edad fértil, menopausia y envejecimiento. Las mujeres con infección por el VIH-1 afrontan situaciones peculiares que suponen con frecuencia desafíos clínicos específicos y diferentes a los de los hombres infectados. Aunque van sumándose nuevos datos, somos conscientes de la necesidad de responder a muchas preguntas sobre esas diferencias de sexo y su repercusión en el manejo clínico de la mujer infectada por el VIH-1⁷⁴²⁻⁷⁴⁶.

GESIDA y la SPNS han publicado, de forma casi simultánea con estas directrices, un documento de consenso sobre la asistencia sanitaria integral de las mujeres infectadas por el VIH-1. Remitimos a los clínicos a este prolijo y actualizado documento que contempla de forma extensa y detallada todos los aspectos esenciales en el abordaje interseccional y multidisciplinar de las mujeres infectadas por el VIH-1⁷⁴⁷.

10.1 Consideraciones especiales del TAR en la mujer

Varios estudios de cohortes han descrito en las mujeres datos discordantes, tanto en los parámetros inmuno-virológicos, como en la progresión de la enfermedad⁷⁴⁸⁻⁷⁵⁰. No obstante, no se han observado diferencias por sexo en la eficacia de los FAR, como se describe en diferentes meta-analisis⁷⁵⁰ y en los análisis específicos de eficacia según el sexo de grandes ensayos clínicos^{282, 304, 751-756}, aunque no de forma unánime⁷⁵⁴⁻⁷⁵⁸. El inicio y la elección del TAR en la mujer tienen las mismas indicaciones y objetivos que en el varón, con la única salvedad del número de linfocitos CD4⁺ (menor de 250 células/μL), si la combinación antirretroviral incluye NVP.

Existen, sin embargo, aspectos específicos del sexo que obligan a modificaciones en el TAR y deben ser tenidos en cuenta. Así el potencial reproductivo de la mujer⁷⁵⁹, en sus distintas etapas, condiciona una cuidadosa aproximación multidisciplinar, con el fin no solo de evitar la transmisión vertical, sino además de prevenir otras ITS, embarazos no deseados y comorbilidades específicas (infección por HPV y carcinoma de cérvix)^{760, 761}.

Hasta hace muy poco tiempo se creía que la infección por el VIH-1 y su terapia incidían en una menopausia más precoz y con síntomas más intensos^{760, 761}. No obstante, estudios recientes han señalado que, exceptuando la asociación con la inmunodepresión profunda, la menopausia precoz en mujeres con infección por el VIH está relacionada con los factores clásicos ya descritos en las mujeres VIH-negativas, tales como el uso de drogas y alcohol o la pertenencia a determinadas etnias ⁷⁶².

10.2 Diferencias en efectos adversos

Se han descrito diferencias entre ambos sexos en cuanto a los efectos adversos del TAR, que sin duda es un tema preocupante. A las evidencias aportadas por el grupo ICONA y otras cohortes⁷⁴¹ se suman los resultados de ensayos clínicos como el FIRST^{751,753,754}. Sin embargo, dada la baja representatividad de las mujeres en los ensayos son necesarios datos que confirmen estas diferencias y su repercusión a largo plazo^{282,304,753-755,763}.

De sobra conocido y con reflejo específico en las directrices, es el incremento de la susceptibilidad femenina al exantema y la hepatotoxicidad grave con NVP y la mayor incidencia de acidosis láctica con ITIAN de primera generación, sobre todo durante el embarazo⁷⁶⁴.

En cuanto a las alteraciones metabólicas, incluida la resistencia insulínica, también se han descrito diferencias entre ambos sexos aunque los datos son menos concluyente. La redistribución grasa^{765,766} tiene características especiales en las mujeres con una mayor repercusión psicológica^{767-770.}

También los efectos tóxicos del EFV sobre el SNC son más frecuentes en las mujeres y condicionan, en ocasiones, un abandono precoz de la terapia^{771, 772}. Por último, aunque la osteopenia/osteoporosis es más prevalente en las mujeres con infección por el VIH-1^{773,774} su menor densidad ósea es clínicamente irrelevante antes de la menopausia⁷⁷⁵⁻⁷⁷⁷, cobrando mayor importancia en la post-menopausia^{777,778}. Los cambios en la densidad mineral ósea son multifactoriales y están en relación directa con la composición corporal⁷⁷⁹, con el consumo de tóxicos⁷⁸⁰, dieta, ejercicio, etc., además de la acción del propio VIH y del TAR. Este aspecto no es baladí en una población que envejece, con mayor velocidad y con mayor concomitancia de factores de riesgo, que la de referencia, y puede determinar cambios en el TAR.

10.3 Otras diferencias de sexo que pueden afectar la eficacia del TAR

Aunque no se han identificado peores resultados en la eficacia virológica del TAR ^{282,304,}736,752-756</sup>, se ha observado una menor durabilidad del TAR tanto en ensayos clínicos ⁷⁵³⁻⁷⁵⁵ como en estudios observacionales ^{772,781-783}.

Podemos identificar factores de confusión potenciales que explicarían parte de estas diferencias: aspectos socio-culturales (la desigualdad de la mujer en algunos sectores como inmigrantes, minorías étnicas, etc.), superior incidencia de problemas psicológicos/psiquiátricos⁷⁸⁴ mayor temor a la estigmatización, excesiva preocupación por la confidencialidad, etc., todo lo cual contribuye a dificultades en el acceso al sistema sanitario, al retraso en el inicio del TAR y a una peor adherencia^{785,786}. En resumen, el éxito en el cuidado a la mujer con VIH depende en gran medida de la capacidad de entender y subsanar todas aquellas barreras específicas de género para mitigar los peores resultados observados en la clínica diaria^{787,788}.

10.4 Mujer en periodo fértil: interacciones con anticonceptivos hormonales

Aproximadamente el 70% de las mujeres que participan en estudios sobre el VIH-1 son sexualmente activas muchas de ellas en edad fértil. El uso del preservativo es el método anticonceptivo de elección tanto por su eficacia (con una tasa de fallos del 3%)⁷⁸⁹ como por prevención simultánea de otras ITS. En la práctica real, el uso de métodos anticonceptivos es variable y la anticoncepción hormonal puede ser más frecuente en muchas pacientes debido a influencias culturales u otros factores. Además, en ocasiones son prescritos por médicos de familia o ginecólogos desconocedores de los riesgos potenciales sin consultar con un especialista en VIH-1. Los métodos anticonceptivos hormonales e intrauterinos en general se han mostrado seguros en mujeres con infección VIH-1^{790-792,793}, incluso a largo plazo, en como es el caso de los dispositivos intrauterinos que liberan levonorgestrel⁷⁹⁴. No obstante, se han descrito embarazos no deseados con el uso de implantes de etonorgestrel en pacientes con EFV⁷⁹⁵. Los anticonceptivos hormonales inyectables son en algunas cohortes más eficaces que los orales y mucho más que los preservativos⁷⁹⁶. Los autores preconizan la importancia de los planes de prevención familiar y de métodos anticonceptivos duales.

La anticoncepción hormonal no interfiere con la eficacia del TAR, pero los datos son discordantes en cuanto a su relación con la progresión de la enfermedad⁷⁹². Muchos de los FAR de uso común interaccionan con los anticonceptivos hormonales⁷⁹⁷⁻⁸⁰⁴, au-

mentando o disminuyendo los niveles en sangre de etinilestradiol y/o de noretindrona, conduciendo a la intensificación de su toxicidad (como, por ejemplo, el tromboembolismo) o a la disminución de su eficacia respectivamente (para más detalles véase el capítulo de interacciones y las tablas 5-9). Incluso la escasa experiencia que existe con levonorgestrel en la contracepción de emergencia, indica que la inducción por EFV podría hacer necesario un aumento de dosis⁸⁰⁵. Cuando se usan estos fármacos se recomienda la utilización de medios alternativos o adicionales de contracepción.

En cuanto al acetato de medroxiprogesterona depot (DMPA o Depo-Progevera) aunque hay pocos estudios, no parece ver afectados sus niveles por NFV, NVP o EFV^{806, 807}. Hay que tener en cuenta su efecto negativo sobre la densidad mineral ósea⁸⁰⁸ en pacientes con osteoporosis establecida o con factores de riesgo. Un aspecto especialmente controvertido es el que se refiere a la asociación entre el uso de contraceptivos hormonales, como la DMPA, y el incremento del riesgo de adquisición y transmisión del VIH. Así se observó en un estudio que incluyó a casi 3.800 parejas sero-discordantes en las que el riesgo de transmisión se duplicó⁸⁰⁹. A pesar de los posibles sesgos del trabajo⁸¹⁰, su plausibilidad biológica y su concordancia con otros estudios obligan a una investigación más amplia⁸¹¹⁻⁸¹³.

Hay muy pocos datos respecto a otros tipos de anticoncepción hormonal combinada (parches de larga duración, anillos vaginales con componente hormonal, etc.)⁷⁹⁶, por lo que se recomienda también el uso de medios combinados de contracepción.

Recomendaciones sobre TAR en mujeres

- El inicio y los objetivos del TAR son los mismos en las mujeres que en los hombres (A-III)
- La mayor incidencia de exantema y hepatotoxicidad por NVP condicionan modificaciones en su uso en las mujeres (cifras de linfocitos CD4⁺ inferiores a 250 células/μL) (A-II)
- La elección de la combinación del TAR de inicio en la mujer debe de tener en cuenta su deseo o riesgo de embarazo y el uso de anticonceptivos orales. Estos fármacos interaccionan con muchos FAR, por lo que deben tenerse en cuenta sus posibles interacciones y complementar su uso con un método de barrera (protección dual) (A-III)

10.5 TAR en el embarazo y prevención de la transmisión materno-fetal

La transmisión materno-fetal es la causa de prácticamente la totalidad de los casos de infección por VIH-1 en niños. Estamos, sin duda, ante una nueva etapa de la epidemia, en la cual el deseo de la maternidad forma parte de los derechos de la paciente y su adecuada planificación entra dentro de su atención integral⁸¹⁴. El periodo fetal más vulnerable es durante la gestación temprana por lo que todas las mujeres deben recibir información previa sobre la teratogenicidad de los fármacos como parte de su control clínico y adecuar el TAR ante el deseo de embarazo⁸¹⁵⁻⁸¹⁸.

A continuación se resumen las evidencias sobre las que se basan las recomendaciones del TAR en el embarazo y prevención de la transmisión vertical. Si se requiere más información se aconseja la lectura de documentos más amplios^{815,818}.

Se recomienda realizar la serología frente al VIH-1 a todas las embarazadas independientemente de sus antecedentes epidemiológicos. El riesgo de transmisión vertical depende de varios factores (maternos, virales, placentarios, obstétricos, lactancia, fetales, neonatales, etc.) pero la CVP de la madre durante el embarazo y en el parto es el factor determinante, sin que exista un dintel mínimo que evite la transmisión⁸¹⁵.

Ante una mujer infectada por el VIH-1, la prevención de la transmisión vertical se basa en los siguientes principios: realización de TAR, CVP indetectable o lo más baja posible, prueba de resistencias, cesárea programada (si la CVP es superior a 1.000 copias/mL), tratamiento con ZDV del niño durante 6 semanas y evitar la lactancia materna^{815,819}. El tratamiento con ZDV endovenosa durante el parto está ahora cuestionado, recomendándose sólo si la CVP es superior a 400 copias/mL^{820,821}.

El objetivo del TAR en el embarazo es conseguir y mantener la CVP indetectable. La prueba de resistencia genotípica está recomendada para todas las embarazadas antes de comenzar el TAR, así como para aquellas que, estando en TAR tengan CVP detectable. En ocasiones, es necesario iniciar el TAR aún sin disponer del resultado de la prueba, sujeto a modificación posterior en el caso de que éste detecte mutaciones de resistencias a los FAR elegidos⁸¹⁹.

10.6 Consideraciones a tener en cuenta respecto al TAR en el embarazo

El embarazo en la mujer con infección por el VIH-1 implica unas elecciones específicas que afectan tanto a los FAR y sus dosis (los niveles de algunos de ellos disminuyen en el segundo y tercer trimestre), al momento del inicio del TAR, a los efectos adversos por toxicidad durante el embarazo y a los potenciales riesgos para el neonato, muchos de los cuales son desconocidos con la mayoría de los FAR. Es controvertida tanto la necesidad como el acceso a la monitorización de los niveles de fármacos durante la gestación así como el aumento de su dosis, no siendo éste recomendado de forma universal si la CVP está por debajo de los niveles de detección.

Los datos de seguridad de los FAR para el feto son limitados (Tabla 17). De los datos disponibles, se puede destacar:

- 1) Está en plena discusión el momento de inicio del TAR en la paciente embarazada sin TAR previo. Las respuestas de las directrices no son homogéneas al respecto, pero se acumulan evidencias acerca de que el tiempo de inicio y la duración del-TAR, sobre todo en mujeres con CVP superior a 100.000 copias/mL, son factores determinantes de la consecución de una CVP indetectable en el embarazo y de un recién nacido libre de infección⁸²².
- 2) ZDV es segura al menos a corto y medio plazo, aunque un estudio sugirió la existencia de riesgo de toxicidad mitocondrial en los niños.
- 2) EFV es un fármaco potencialmente teratógeno. Puesto que su período de neurotoxicidad se restringe a las primeras 5-6 semanas de gestación⁸²³, la mayoría de mujeres conocen su embarazo pasado ese tiempo. Por otro lado, en un reciente meta-análisis

de 21 estudios, el riesgo relativo de defectos en los recién nacidos de mujeres con EFV en relación a los de mujeres tratadas otros ARV fue 0,85⁸²⁴. Teniendo en cuenta todo ello, no sería necesario retirar EFV a las embarazadas que ya lo estuvieran tomando y así lo recogen las últimas directrices perinatales del DHHS y la BHIVA^{815,821}.

- 3) Los FAR más seguros en el embarazo son LPV⁸¹⁶, ATV^{825,826}, NVP, ZDV y 3TC. ATV ha pasado a ser un IP preferido en lugar de alternativo al disponerse de más información sobre su seguridad en el embarazo.
- 4) En algunos estudios se ha asociado el uso de IP con bajo peso al nacer⁸²⁷ o prematuridad. En trabajos más recientes la prematuridad y el bajo peso se relacionan tanto con el propio VIH⁸²⁸ como con las características socio-demográficas de la mujer y el TAR, y más específicamente con el inicio de RTV⁸²⁹.
- 5) La seguridad de otros fármacos es aún peor conocida, y aunque se catalogan como categoría "B" o "C" de la FDA (Tabla 17), los datos disponibles de seguridad, especialmente a largo plazo, son limitados. Con los datos que se van acumulando, DRV ha pasado a ser un FAR alternativo en el embarazo y RAL pasa de tener insuficientes datos para ser recomendado a uso en determinadas circunstancias 815,821. Se tiene escasa información de TDF, FPV e IDV y muy escasa de TPV, DRV, RAL, ETR y MVC 830-832. Por ello, se deben evitar estos FAR, salvo en pacientes embarazadas en fracaso virológico, en cuyo caso deberemos orientarnos en función de la escasa información disponible.

También existe controversia respecto a la seguridad de TDF en el embarazo, cuestión de gran importancia habida cuenta de que cada vez son más las embarazadas cuyo régimen de TAR incluye este FAR⁸³³. Aunque la mayoría de los datos más recientes no reflejan alteraciones en el desarrollo óseo⁸³⁴, un importante estudio de cohortes (PHACS)⁸³⁵ observó una muy ligera menor longitud y circunferencia de la cabeza de los nacidos al año de seguimiento.

Existe un registro establecido en 1989 que recoge de forma prospectiva la prevalencia de malformaciones entre los expuestos <mark>a cualquier FAR</mark> durante el primer trimestre, que es del 2,9%, similar al de la población no expuesta (2,7%)⁸³⁶.

En cuanto a la madre, cabe reseñar que se han descrito casos de toxicidad mitocondrial y acidosis láctica en gestantes, las cuales pueden estar más predispuestas a esta complicación. Estos efectos secundarios se asociaron inicialmente a ZDV pero posteriormente se han descrito casos relacionados con d4T. La FDA ha comunicado tres muertes maternas por acidosis láctica y tres muertes fetales en mujeres tratadas con d4T y ddl como ITIAN, por lo que desaconseja esta combinación⁷⁶⁵. Además se ha descrito que la hepatotoxicidad por NVP sería 12 veces más frecuente en gestantes con una cifra de linfocitos CD4⁺ superior a 250 células/μL⁸³⁷.

La elección del TAR en la embarazada y sus particularidades se explican detalladamente en las directrices específicas nacionales o internacionales ^{815,818,821}.

Los datos disponibles acerca de la eficacia de la cesárea programada (semana 38) como instrumento potencial para reducir la transmisión vertical, sugieren que si en el momento del parto la CVP es inferior a 1.000 copias/mL, la cesárea electiva no disminuye el riesgo de transmisión del parto vaginal (0,8% frente a 0,7%)^{815,838,839}. La morbilidad relacionada con la cesárea en los países desarrollados no parece ser importante⁸³⁹.

Recomendaciones sobre TAR y gestación

- La prueba de VIH-1 debe efectuarse a toda mujer embarazada (A-III). Si hay prácticas de riesgo debe repetirse en el tercer trimestre (A-III)
- En las mujeres que llegan al parto sin conocer su estado respecto al VIH-1, se debe hacer un prueba rápida, ya que la cesárea electiva reduce la transmisión un 50% (A-II)
- El objetivo del TAR es conseguir CVP indetectable (A-II). La decisión de iniciar el TAR en el primer trimestre o demorarlo hasta la semana 12 dependerá del recuento de linfocitos CD4+, de la CVP y de las condiciones de cada mujer, tales como náuseas y vómitos (A-III). El inicio más precoz del TAR puede ser más efectivo en reducir la transmisión materno-fetal. (B-III).
- Debe realizarse una prueba de resistencias en todas las mujeres con infección por el VIH-1 embarazadas sin TAR o en las que la CVP sea detectable (A-III)
- Uno de los fármacos a incluir en el TAR de inicio de la mujer embarazada debe ser ZDV, que se administrará durante el embarazo y al recién nacido (A-I). En cualquier caso el regimen de TAR debe incluir dos ITIAN que atraviesen la barrera placentaria (ZDV, 3TC, FTC, TDF o ABC).
- En general, la mujer VIH que ya realiza TAR y se queda embarazada debe mantener su régimen previo de TAR, siempre que sea bien tolerado y eficaz. Muchos expertos recomiendan no retirar EFV una vez pasadas 5 ó 6 semanas de gestación (C-III). Si la mujer tomaba NVP y tiene CVP indetectable debe mantenerse este FAR, independientemente del recuento de linfocitos CD4+ (A-III).
- Se desaconseja la combinación de d4T+ddl por riesgo de acidosis láctica (B-III)
- Es fundamental planificar el control de la CVP antes del parto, hacia las semanas 32-36. Si no se consigue una CVP suficientemente baja (<1.000 copias/mL), se debe indicar una cesárea programada en la semana 37-38 (A-II)

11. PREVENCION DE LA TRANSMISIÓN DEL VIH-1

En el año 2010, la incidencia de nuevas infecciones se ha estabilizado o disminuido en algunos países, pero se calcula que alcanzó los 2,7 millones⁸⁴⁰. En las últimas décadas se han realizado múltiples intervenciones biomédicas para disminuir la transmisión del VIH-1. Se han conseguido algunos éxitos con los programas de intercambio de jeringuillas y tratamiento sustitutivo con metadona en los UDVP, así como la disminución de nuevas infecciones en un 50-60% en varones heterosexuales mediante la circuncisión masculina, la difusión del uso del preservativo, el control de las ITS, sobre todo del herpes genital, la espectacular disminución de la transmisión vertical, y la disminución de la transmisión en parejas serodiscordantes^{16,152,841,842}.

Las actuaciones destinadas a lograr modificaciones de conducta no han logrado sus frutos, fundamentalmente por la diferente percepción del riesgo en la transmisión sexual¹⁶. Una de las principales dificultades en la disminución de la transmisión sexual del VIH-1 estriba en la detección de la infección por el VIH-1 aguda por su elevada capacidad de transmisión ⁸⁴³. Por otra parte el diagnóstico tardío de la infección VIH-1 contribuye a la transmisión sexual.

En el año 2008 se estimó que el número de pacientes infectados nuevos era 2,5 veces superior al de pacientes que iniciaron TAR⁸⁴⁰. Una intervención biomédica combinada en la prevención del VIH-1 es una necesidad urgente^{16,844-846}. En ausencia de una vacuna preventiva, se ha planteado que el TAR puede prevenir la transmisión del VIH-1: antes de la exposición mediante la profilaxis pre-exposición (PrEP), después de la exposición por la profilaxis post-exposición (PPE) y la prevención secundaria con el tratamiento de la población infectada⁸⁴⁴⁻⁸⁴⁶. La lucha frente al VIH/SIDA ha alcanzado un gran desarrollo, y ahora es posible plantearse una próxima generación libre de la infección por el VIH⁸⁴⁷.

Papel del TAR en prevención de la transmisión del VIH-1

El TAR disminuye la CVP en las secreciones genitales, lo que puede contribuir a la reducción de la transmisión sexual⁸⁴¹.La mayor evidencia de la efectividad del TAR en la reducción de la transmisión sexual del VIH-1 proviene del estudio aleatorizado HPTN 052¹⁵² y de estudios observacionales realizados en parejas heterosexuales serodiscordantes. En un meta-análisis se observó un riesgo cero con CVP inferior a 400 copias/mL bajo TAR. El riesgo de transmisión de una persona en TAR es de 0,5 por 100 personas/año y de 5,6 por 100 personas/año de los pacientes no tratados⁸⁴⁸.

Varios estudios observacionales realizados en África han demostrado una disminución de la transmisión en un 80-92% en 6.424 parejas serodiscordantes tras el inicio de TAR en las personas infectadas⁸⁴⁹⁻⁸⁵¹, la cual fue cero en una cohorte de Madrid, a pesar de contabilizar más de 7.000 relaciones coitales no protegidas y 47 gestaciones naturales, mostrando que el TAR confirió una mayor capacidad preventiva que el uso adecuado del preservativo⁸⁵². Estos estudios y el HPTN052 fueron valorados en *The Cochrane Collaboration*, un estudio de la cual concluye que el TAR es una intervención potente en la prevención del VIH-1 en las parejas heterosexuales serodiscordantes en las que el caso índice tenga una cifra de linfocitos CD4⁺ inferior a 550 células/μL (límite superior de linfocitos CD4⁺ en la población estudiada)⁸⁵³.

El estudio aleatorizado en fase-III (HPTN-052)¹⁵² incluyó 1.763 parejas serodiscordantes, cuyos casos índice presentaban cifras de linfocitos CD4⁺ comprendidas entre 350-550 células/μL (el estudio tenía dos objetivos: evaluar la evolución de la infección según se iniciara el tratamiento de modo precoz o tardío y estudiar el riesgo de transmisión de la infección). Todas las parejas fueron instruidas en la prevención de la transmisión sexual y en la adherencia. Se objetivaron 39 casos de transmisión, 28 de los cuales estaban relacionados genéticamente con el VIH-1 del paciente infectado de la parejas. De los 28 casos de transmisión, 27 se produjeron en el grupo de inicio tardío del TAR (menos de 250 linfocitos CD4⁺/μL) y un caso de transmisión en el grupo de inicio precoz del TAR (más de 350 linfocitos CD4⁺/μL). Se demostró una reducción de la transmisión sexual del 96% (HR: 0,04; IC 95%: 0,01 a 0,27; p<0,001) en el grupo de TAR

precoz y un retraso de la progresión clínica de la infección (HR: 0,59; IC95%: 0,40 a 0,88; p<0,01). La durabilidad del efecto del TAR en la prevención es un objetivo de la siguiente fase del estudio HPTN 052.

La eficacia demostrada del TAR en la prevención secundaria en las parejas heterosexuales serodiscordantes no puede ser extrapolada a otras situaciones. El comité científico de la President's Emergency Plan for AIDS Relief (PEPFAR) ha concluido que no existen razones para pensar que el TAR no pueda suprimir la transmisión heterosexual en grupos de riesgo elevado⁸⁵⁴. En cambio el Comité de Expertos de la OMS concluye que no hay razón para presuponer que con TAR la contagiosidad de los hombres que tienen relaciones sexuales con hombres (HSH) sea menor⁸⁵⁵. Hay estudios específicos en parejas serodiscordantes de HSH. La biología de la transmisión en UDVP precisa nuevas investigaciones. Estos datos sugieren que una difusión amplia de TAR podría reducir la transmisión por vía sexual. Un modelo matemático basado en la detección precoz de la infección, mediante una prueba universal voluntaria, y el inicio de TAR precoz en todas las personas recién diagnosticadas, mostró una disminución de la incidencia y de la mortalidad a menos de 1 caso por 1.000 personas/año en 10 años⁸⁵⁶. Otro modelo similar realizado en HSH de San Francisco, mostró una disminución del 91% en la incidencia en 10 años^{857.} Sin embargo en países con una elevada cobertura de TAR, como EEUU, Holanda, Francia y Australia, la incidencia de la transmisión entre HSH no ha disminuido⁸⁵⁸.

Recientemente se han comunicado efectos beneficiosos indirectos de TAR en la comunidad. Tanto en San Francisco como en Vancouver se observó una relación entre la generalización del TAR y la disminución de nuevos casos de infección VIH-1^{859,860}. Por su contribución a la disminución de la infección en la comunidad, estos estudios han sido denominados "estudios ecológicos". Dichos estudios son interesantes en la medida que generan nuevas expectativas, pero también son problemáticos porque tienen sesgos en la metodología y resultados contradictorios, fundamentalmente porque se debería evaluar en ellos la accesibilidad y adherencia al TAR⁸⁶¹. En un estudio realizado en Sudáfrica con una cohorte longitudinal de 16.667 habitantes se observó que por cada aumento del 1% en la cobertura de TAR en la población infectada, había una disminución del 1,7% en el riesgo de transmisión en la población no infectada⁸⁶². Este resultado se presenta como de los más convincentes dentro de la estrategia de la prevención secundaria del VIH-1.

Los problemas de los modelos matemáticos basados en el TAR para disminuir la transmisión sexual del VIH-1 y de los estudios "ecológicos", comienzan cuando se confrontan con la realidad. Se calcula que en los países occidentales el 21-30% de la población infectada por el VIH-1 desconoce su situación y el porcentaje de diagnósticos tardíos alcanza el 15-45%, a pesar de las campañas realizadas en USA para el uso de las pruebas rápidas para la detección precoz del VIH-1^{861,863}. La detección de la infección aguda, y su importancia en la transmisión, es un problema difícil de abordar y habitualmente no está considerado en los modelos matemáticos. En EEUU aproximadamente el 75% de los pacientes diagnosticados en los 12 meses previos son controlados en el sistema sanitario y el 80-90% en un período de 3-5 años. En los países occidentales, a pesar de las recomendaciones de las diferentes guías para el inicio de TAR, un 20-27% de pacientes con indicación de TAR no son tratados. En la práctica diaria, si obtuviéramos una detección del 90%, con el uso de TAR precoz, con una adherencia a la

terapéutica del 90% y una fidelidad del 90% en el seguimiento, se lograría la indetectabilidad de la CVP en el 90% de los pacientes tratados. En este escenario ideal, se calcula que el 34% de los pacientes infectados se mantendrían con CVP detectables, con el potencial riesgo de transmisión⁸⁶³.

En este campo quedan cuestiones importantes por determinar: la durabilidad de la protección, el balance de los beneficios y efectos adversos de la terapia precoz, la adherencia a largo plazo, la posibilidad de transmisión de cepas resistentes y las dificultades de su implementación en los países en vías de desarrollo^{844,846}.

Recomendaciones

- Se recomienda el uso de TAR para prevenir la transmisión del VIH de una persona infectada a su pareja heterosexual (A-I)
- Se recomienda el uso del TAR para prevenir la transmisión del VIH entre personas con otras prácticas de riesgo (A-III)

Profilaxis Pre-Exposición

La profilaxis pre-exposición (PrEP) está basada en estudios realizados con animales, en los que se demostró que los FAR pueden prevenir la transmisión del VIH-1. Está dirigida a grupos de personas no infectadas por el VIH-1, pero con un elevado riesgo de adquirir la infección por vía sexual, como: trabajadores del sexo, mujeres y varones en parejas discordantes, HSH y UDVP.

El estudio CAPRISA-004, dirigido a mujeres sexualmente activas de parejas serodiscordantes, comparó TDF al 1% en gel vaginal, antes y después del coito, frente a placebo. Se demostró en él una disminución global en la incidencia de transmisión de un 39%, que alcanzó hasta el 54% en las mujeres con una adherencia superior al 80%⁸⁶⁴. El estudio IPrEX, que comparó TDF/FTC por vía oral frente a placebo en HSH, mostró una disminución de la transmisión del VIH del 44%. La adherencia fue un factor fundamental en la eficacia, como indica el hecho de que se hallasen niveles plasmáticos detectables de TDF y FTC en el 51% de los HSH que permanecieron seronegativos frente al 9% de los que se infectaron⁸⁶⁵.

En 2012 se han publicado tres estudios que previamente habían sido comunicados en congresos. El estudio Partners-PrEP se realizó en África con 4.758 parejas serodiscordantes (distribución por sexo de los miembros seronegativos: 38% mujeres y 62% varones). Se observó una reducción del riesgo de transmisión con TDF en un 67% y con TDF/FTC en un 75%, respecto al grupo placebo. La eficacia fue similar para hombres y mujeres y no se objetivaron diferencias significativas entre TDF y TDF/FTC. Tampoco hubo diferencias en el porcentaje de efectos adversos ni en el de embarazos 866. El estudio TDF-2 fue realizado en Botswana, donde la prevalencia de la infección por el VIH es del 17,6% en la población general y del 40% en el estrato de personas de edad comprendida entre 30 y 44 años, en 540 mujeres y 660 varones heterosexuales. Se consiguió una reducción del 62% con TDF/FTC frente a placebo, pero sin diferencias significativas entre las mujeres. Este estudio tuvo la limitación de que el 30% de los

individuos aleatorizados no finalizaron el seguimiento⁸⁶⁷. En estos dos estudios, a pesar de una elevada adherencia, evaluada por la referencia de los pacientes y por el contaje de comprimidos, se halló de forma restrospectiva una diferencia estadísticamente significativa en los niveles plasmáticos de TDF entre los pacientes que se infectaron y los que permanecieron sin infección. El estudio FEM-PrEP, que también fue realizado en África en 2.120 mujeres de edades comprendidas entre 18 y 45 años y con un alto riesgo de infección por vía sexual, fue suspendido por falta de eficacia, pues en el grupo de TDF/FTC se observó una tasa de incidencia de 4,7 infecciones por 100 pacientes/año y en el grupo placebo de 5 infecciones por 100 pacientes/año (HR: 0,94; IC 95%: 0,59 a 1,52; p=0,81). Hubo un mayor porcentaje de embarazos durante el seguimiento en el grupo de TDF/FTC. Este estudio tuvo un problema muy importante en la adherencia pues un porcentaje inferior al 40%, tanto de las mujeres que presentaron seroconversión como las que permanecieron sin infectarse por el VIH, presentaban niveles plasmáticos detectables de TDF868. El estudio VOICE, que aun no ha sido publicado, fue igualmente realizado en África e incluyó 5.000 mujeres de edades comprendidas entre 18 y 45 años. Una parte del estudio pretendía comparar TDF, TDF/FTC y placebo por vía oral, y otra un gel de TDF al 1% con un gel de placebo, ambos administrados diariamente por vía vaginal. La rama de TDF por vía oral y la de TDF en gel vaginal fueron suspendidas por falta de eficacia⁸⁶⁹. En todos los estudios anteriormente comentados la tolerabilidad y seguridad fueron excelentes. En el estudio TDF-2 se observó una disminución en la densidad mineral ósea en los pacientes tratados con TDF, aunque se desconoce su significación clínica. Los tres estudios reflejaron en sus seguimientos una disminución de las prácticas sexuales de riesgo.

Las diferencias observadas en estos estudios probablemente estén relacionadas con la falta de adherencia y con niveles insuficientes de FAR en el tracto genital femenino. Se ha observado que las concentraciones alcanzadas en las secreciones vaginales con TDF por vía oral son muy inferiores a las obtenidas con TDF en forma de gel tópico. Las concentraciones intracelulares de TDF-DP fueron 100 veces superiores en la mucosa rectal que a nivel cérvico-vaginal y, en cambio, las concentraciones de FTC-TP fueron 10-15 veces superiores en el tejido vaginal y en el cérvix que a nivel rectal. No se conocen las concentraciones de TDF-DP y FTC-TP que son necesarias para inhibir la transmisión del VIH-1^{845,870}.

Recientemente, la OMS y los CDC han elaborado unas recomendaciones para el uso de PrEP con TDF o TDF/FTC por vía oral en personas sin infección por el VIH-1 que tienen un elevado riesgo de adquirir la infección por vía sexual, fundamentalmente individuos heterosexuales con múltiples parejas, HSH y miembros de parejas heterosexuales serodiscordantes⁸⁷¹⁻⁸⁷³. La FDA ha autorizado el uso de TDF/FTC en la PrEP del VIH-1. Durante la PrEP se recomienda la realización de la prueba del VIH al menos cada tres meses.

No hay datos específicos en mujeres embarazadas ni en UDVP. Se recomienda realizar estudios de adherencia de forma prospectiva y una búsqueda activa de infección aguda por el VIH-1 así como de toxicidad. Actualmente hay en marcha estudios de PrEP con otros FAR (MCV, RAL, RPV), otros fármacos inyectables, microbicidas vaginales, pautas intermitentes, etc. 845,870,874.

La PrEP es un reto para los organismos internacionales. Teniendo en cuenta los escasos recursos existentes, se plantea la duda entre ofertar PrEP a personas no infectadas o

TAR a las personas infectadas. La mejor estrategia de salud pública en la actualidad es la de ofertar TAR a todos los pacientes infectados y reservar PrEP para casos muy específicos 845,870,874. En el actual estado de conocimientos no se ha emitido ninguna recomendación a este respecto en Europa.

Profilaxis post-exposición ocupacional

El uso de TAR tras una exposición profesional al VIH-1 reduce el riesgo de transmisión, aunque se han documentado transmisiones a pesar de una PPE correcta con tres FAR. El riesgo global de transmisión del VIH-1 tras una exposición percutánea con sangre infectada oscila entre el 0,24 y el 0,65 %, y tras un contacto con mucosas o piel no intacta es del 0,09%⁸⁷⁵. Los factores asociados a un mayor riesgo de transmisión del VIH-1 son: pinchazo profundo (OR: 15; IC 95%: 6,0 a 41), presencia de sangre visible en el dispositivo (OR: 6,2; IC 95%: 2,2 a 21), con un sistema recién extraído de vena o arteria (OR: 4,3; IC 95%: 1,7 a 12) o de una fuente de exposición con una infección por el VIH-1 avanzada y una CVP superior a 1.500 copias/mL (OR: 5,6; IC 95%: 2 a 16). La PPE con monoterapia (ZDV) reduce la transmisión un 81% (OR: 0,19; IC 95%: 0,06 a 0,52)⁸⁷⁶. No existen estudios comparativos que permitan establecer recomendaciones firmes sobre el momento de inicio, la duración o los FAR o combinaciones de FAR a emplear tras una exposición accidental.

Por modelos animales, y estudios de casos y controles sabemos que la PPE es tanto más eficaz cuanto antes se inicie. Su duración no está establecida pero en modelos animales los periodos de 3-10 días de tratamiento son menos eficaces que los de 28 días, por lo que se ha consensuado recomendar cuatro semanas. No hay estudios que demuestren que la PPE con tres FAR sea mejor que con dos FAR, aunque prevalece la opción de indicar triple terapia, de modo similar al TAR de inicio. La elección de los FAR dependerá de los potenciales efectos adversos y de las preferencias de los sanitarios, teniendo en cuenta que la intolerancia a los FAR entre el personal sanitario es muy elevada (50%)^{877,878}.

Para establecer la indicación de profilaxis debemos conocer el tipo de exposición y solicitar, tras consentimiento informado, una prueba serológica rápida frente al VIH-1, VHB y VHC del paciente-fuente y del trabajador. En la elección de PPE se debe tener en cuenta un posible embarazo y potenciales interacciones medicamentosas con fármacos que pudiera estar tomando la persona afectada. En la actualidad se están revisando las guías sobre PPE. Parece que se va a recomendar una pauta de tres FAR en todos los casos, dada la excelente tolerabilidad y eficacia de los nuevos regímenes. En la revisión de octubre de 2012 de la guía del Estado de Nueva York se recomienda una combinación de TDF/FTC y RAL como régimen preferente, y de TDF/FTC y DRV/r (800/100) o ATV/r (300/100) o FPV/r (1400/100) como regímenes alternativos. Estas mismas guías ya no recomiendan pautas de dos ITIAN ni el uso de ZDV. Sin embargo otros organismos norteamericanos y europeos continúan recomendando el uso de TDF/FTC/LPV/r. NVP no es aconsejable por su potencial toxicidad cutánea o hepática ^{875,877-881}. Tampoco se recomienda ABC por la posibilidad de que ocurra una RHS.

La transmisión ocupacional del VIH-1 es muy rara y la evidencia muestra que la PPE modifica los riesgos de transmisión. Conviene recordar que ninguna pauta de PPE será eficaz al 100%⁸⁸¹. En el Reino Unido, un estudio de la *Health Protection Agency*, mostró

que en el 20% de los casos con exposición manifiesta a pacientes con infección VIH-1 no se realizó la PPE. El conocimiento de las recomendaciones por parte de los sanitarios era bueno pero existían diferencias en la percepción del riesgo de la transmisión en los diversos estamentos sanitarios a la hora de iniciar una PPE tras una exposición⁸⁸².

En caso de conocer o sospechar que el paciente fuente tiene un virus resistente, se deben seleccionar FAR sin resistencia cruzada. Se ha demostrado que una proporción no desdeñable de virus de los casos fuente pueden presentar mutaciones de resistencia, especialmente a ITIAN e ITINN. No se recomiendan MVC, RAL o ENF para PPE, salvo en casos excepcionales de multirresistencia. Una revisión demostró que un 14% de los casos de PPE se utilizan FAR no recomendados en las guías: DRV/r (42%), RAL (36%), ATV/r (22%) y MVC (7%). La razón fundamental para ello era la presencia de resistencias a FAR en el paciente fuente⁸⁸³.

El inicio de la PPE debe iniciarse lo antes posible, preferentemente en las primeras dos horas y nunca más tarde de 24-36 horas tras la exposición^{875,877}-881.

A toda persona que haya sido evaluada para PPE debe ofrecérsele un plan de seguimiento, que incluirá información, apoyo psicológico y control de los posibles síntomas de primoinfección. Si se prescribió PPE, se debe efectuar un control dentro de las primeras 72 horas para reevaluar la necesidad de profilaxis y conocer si el trabajador ha presentado reacciones adversas, interacciones o problemas de adherencia. Se programarán controles analíticos y serológicos a las 4 semanas y a los 3 y 6 meses. Algunos organismos recomiendan no prolongar el seguimiento después de las 12 semanas, ya que con un resultado negativo a las 12 semanas con las pruebas serológicas de última generación se puede descartar razonablemente una seroconversión.

Recomendaciones

- Los servicios sanitarios deben disponer de un protocolo escrito sobre las actuaciones y derivaciones a seguir en el caso de exposición al VIH-1, profesional o no, con disponibilidad de diagnóstico serológico rápido y con accesibilidad de 24 horas a los fármacos utilizados en la PPE (A-III)
- Se debe valorar el caso fuente (VIH-1 confirmado o sospechoso), el estado serológico de la persona expuesta y las características de la exposición para indicar la PPE (A-III)
- La administración de PPE debe iniciarse lo antes posible, mejor en las primeras dos horas, y hasta las 24-36 horas. Su duración será de 4 semanas (A-II)
- No se recomienda iniciar PPE pasadas las 72 horas de la exposición (A-III)
- Cuando esté indicada la PPE se recomienda una pauta convencional con tres FAR.
 Se recomienda una combinación fija de TDF/FTC asociada a un IP/r (A-III) o, como alternativa, raltegravir (C-III).
- Si se sospecha que el virus del caso índice puede tener resistencia a uno o varios FAR, la profilaxis debe incluir medicamentos sin resistencia cruzada (A-III)

- En caso de duda sobre la indicación de la PPE, se recomienda administrar la primera dosis de forma inmediata y valorar su continuidad en las 24 h posteriores por un experto en infección VIH-1 (A-III)
- El seguimiento debe incluir la revaloración de la indicación a las 24-72 horas del inicio del TAR y control del cumplimiento y tolerabilidad del TAR así como serología al VIH-1, VHB y VHC (estos en caso de fuente infectada o con sospecha) en los meses 1, 3 y 6 tras la exposición (B-III)

Profilaxis post-exposición no ocupacional

La indicación de la PPE no-ocupacional se basa en: la patogenia de la infección por el VIH-1, estudios observacionales, principalmente realizados en mujeres víctimas de violaciones y en HSH, y la información procedente de otras profilaxis frente al VIH-1 (exposición ocupacional, transmisión vertical) y de datos de experimentación animal. No hay datos sobre la eficacia de esta estrategia, pero la información disponible sobre su accesibilidad y seguridad han conducido a una amplia aceptación de la mism⁸⁸⁴.

La práctica sexual con mayor riesgo de transmisión del VIH es la relación anal receptiva no- protegida con un varón infectado por VIH-1 (0,5-3%), seguida del intercambio de jeringuillas (0,67%), de la punción percutánea con una aguja usada por una persona infectada por el VIH-1 (0,3%), de la relación vaginal receptiva (0,05-0,8%), o de la relación vaginal o anal insertiva (0,05-0,065%). La relación orogenital receptiva e insertiva tiene un riesgo menor (0,005-0,01%)⁸⁸⁴⁻⁸⁸⁶. Un estudio ha evaluado el riesgo de transmisión por acto sexual en 1.381 HSH entre los años 2001-2004. La transmisión en la relación anal receptiva fue del 1,43% (IC 95%: 0,48 a 2,85) si existía eyaculación y del 0,65% (IC 95%: 0,15 a 1,53) en caso de retirada previa a la eyaculación. La probabilidad de transmisión por relación anal insertiva en varones circuncidados fue del 0,11% (IC 95%: 0,02 a 0,24) y del 0,62% (IC 95%: 0,07 a 1,68) en varones no circuncidados⁸⁸⁷. Es muy importante recordar que en la era del TAR, la probabilidad de transmisión del VIH-1 por una relación anal receptiva con eyaculación es el doble que sin eyaculación y 10 veces superior a la observada en la relación anal insertiva con un varón circuncidado, en las relaciones heterosexuales o en la exposición ocupacional. El riesgo de transmisión está igualmente aumentado en caso de ITS y en las agresiones sexuales.

Inicialmente existió cierta preocupación porque la extensión de la PPE no ocupacional pudiera reducir las medidas de prevención primaria, al existir una supuesta "profilaxis para el día después", y relajar la seguridad en las prácticas sexuales o de las inyección de drogas. Sin embargo, se ha demostrado que si la PPE no ocupacional se acompaña de la oportuna intervención educativa se pueden reducir las prácticas de riesgo⁸⁸⁸. En este sentido es importante realizar una historia sexual en la primera visita y de forma periódica, junto con el despistaje de ITS y discutir con el paciente los métodos para la prevención de la transmisión del VIH-1 en las relaciones sexuales. Los problemas de la PPE no-ocupacional son que a menudo no se conoce la situación serológica de la fuente, el inicio de la profilaxis suele ser más tardío y el nivel de abandonos suele ser más alto, ya sea por efectos adversos de los FAR, o por simples pérdidas del seguimiento^{878,884,885}. En España, al igual que otros países, la demanda de la PPE no ocupacional

ha aumentado y en ocasiones se utiliza en escenarios no previstos en las recomendaciones existentes⁸⁸⁹.

Recientemente se ha publicado la revisión más extensa de PPE no ocupacional con datos de la cohorte suiza⁸⁹⁰. Desde el año 2006 no se recomienda ninguna profilaxis en la exposición sexual a un paciente con infección por el VIH-1 en TAR estable y con CVP inferior a 50 copias/mL durante más de seis meses. En el referido estudio se observó un aumento progresivo de las consultas para PPE (1.223 consultas y 910 indicaciones de PPE), objetivándose un buen grado de conocimiento y facilidad de acceso a la PPE. El 72% de las solicitudes habían tenido una exposición heterosexual. En el 23% de los episodios el paciente fuente tenía una infección por el VIH-1 y se detectaron 11 nuevos casos de infección desconocida. La mediana de tiempo desde la exposición hasta la consulta fue de 17 horas. Completó la PPE el 60%, presentó efectos adversos el 64% y se perdió el seguimiento del 16%. Se detectaron dos seroconversiones, pero no fueron fracasos de la profilaxis. Un estudio aleatorizado comparó la incidencia de seroconversión en los pacientes que habían recibido PPE tras un asesoramiento estándar (dos sesiones) frente a un asesoramiento intensivo de cinco sesiones. La incidencia de seroconversión al VIH-1 disminuyó en el grupo de mayor riesgo asignado al grupo de asesoramiento intensivo. La adherencia a la PPE fue similar en ambos grupos⁸⁸⁸. La incidencia no ha disminuido entre los HSH en EEUU, Francia, Australia y Holanda. Además la incidencia de transmisión en el año 2009 fue cuatro veces superior en un grupo de HSH que habían recibido PPE que la observada en la cohorte de Amsterdam⁸⁹¹. Estos hallazgos reflejan más una elevada actividad de riesgo que un verdadero fracaso de PPE.

En las recomendaciones de los CDC⁸⁷⁷ y del PNS/Gesida⁸⁷⁹ se insiste en dos aspectos claves de la PPE no ocupacional: 1º) la actuación médica no debe ceñirse exclusivamente a valorar la indicación de PPE con FAR, sino que debe contemplar la oferta de la prueba para el VIH-1, educación sanitaria para la reducción del riesgo de adquisición del VIH-1, valoración del riesgo de transmisión de otras infecciones y seguimiento clínico; y 2º) la decisión de llevar a cabo PPE con FAR ha de ser tomada por el médico y el paciente de forma individualizada, valorando sus beneficios y riesgos y desaconsejándola en personas con exposiciones repetidas. La PPE debe considerase teniendo en cuenta el nivel de riesgo, la vía de exposición, el estado serológico y/o prácticas de riesgo de la persona fuente, así como el TAR recibido por el paciente fuente caso de estar infectado por el VIH-1 y la existencia de factores de riesgo añadidos (Tabla 18).

La elección de los FAR, su inicio y duración es similar al de la PPE ocupacional. En la PPE no ocupacional se debería valorar las concentraciones que alcanzan los FAR en las secreciones genitales respecto a las plasmáticas. La relación entre la penetración de los FAR en tejido genital, la supresión de la carga viral en tejido genital y la relevancia de la presencia de una replicación de bajo nivel a nivel genital no ha sido definitivamente resuelta 845,870.

Históricamente la tolerabilidad y la adherencia de la PPE no ocupacional eran muy bajas, con abandonos del 22%-76%, siendo la toxicidad la principal causa de abandono⁸⁸⁴. Por ello las guías norteamericanas y las de la OMS optan por dos FAR (dos ITIAN) para mejorar la adherencia y recomiendan añadir un tercer FAR en los casos de mayor riesgo. En cambio las guías europeas, y las británicas recomiendan TDF/FTC+LPV/r⁸⁹². La tolerabilidad ha mejorado con las nuevas pautas⁸⁸⁴. En el año 2010 se comunicó la experiencia francesa⁸⁹³, con 249 individuos tratados con TDF/FTC+LPV/r, con un 22% de

abandonos, y la experiencia holandesa⁸⁹⁴, con 139 individuos que recibieron ZDV/3TC+ATV/r, de los que el 91% completó el tratamiento. Sin embargo, la toxicidad no es el único factor relacionado con la adherencia, dado que el estudio holandés mostró que los HSH que habían tenido una exposición con un individuo con infección por el VIH-1 conocida finalizaron la pauta, a pesar de que algunos presentaban efectos adversos más importantes que otros que la suspendieron. Se ha comunicado una experiencia española con 255 pacientes aleatorizados a recibir ZDV/3TC+LPV/r o ZDV/3TC+ATV (400 mg, QD). La tolerancia fue buena, pero las pérdidas de seguimiento fueron elevadas⁸⁹⁵. En 2012 se ha publicado una serie de 100 individuos que recibieron TDF/FTC+RAL. Finalizaron la pauta de 28 días el 57% de los mismos, el 28% suspendió o modificó la pauta y el porcentaje de pérdidas en el seguimiento fue del 15%⁸⁹⁶.

Recomendaciones

- La PPE no ocupacional debe individualizarse y llevarse a cabo en el marco de una intervención médica integral (A-III)
- La PPE no ocupacional debe recomendarse en las situaciones denominadas de "riesgo apreciable" si se dan las siguientes condiciones: a) instauración precoz (similar a la PPE ocupacional), b) ausencia de contraindicaciones para tomar FAR, c) exposición excepcional y d) garantía de seguimiento clínico y analítico del paciente (B-III)
- Los fármacos a emplear, su duración y el seguimiento de los pacientes será igual que en la PPE ocupacional (A-III)
- En caso de exposición sexual debe valorarse el riesgo de ITS y embarazo (A-III)

12. COSTE COMPARATIVO DE LAS DIFERENTES COMBINACIONES DE FAR

En los últimos años, gracias al TAR, se ha reducido la mortalidad relacionada con el sida y mejorado la calidad de vida de los pacientes. Sin embargo, la terapia antirretroviral tiene un elevado coste y, en un entorno donde los recursos son limitados, es necesario gestionar correctamente el gasto. Por ello, se considera conveniente introducir en estas guías unas tablas comparativas de los costes de las diferentes combinaciones de TAR utilizadas como terapia de inicio, ya que existen diferencias sustanciales entre ellas (Fig. 1): el gasto mensual con pautas de eficacia similar puede diferir en cantidades de hasta <mark>casi 500</mark> euros. En la Tabla 19 se indica el precio de venta laboratorio (PVL) de los FAR disponibles en España en <mark>enero de 2013</mark>, así como el PVL con la deducción obligatoria del 7,5% sobre el precio de compra de medicamentos no genéricos y no afectados por el sistema de precios de referencia adquiridos con cargo a fondos públicos del Sistema Nacional de Salud, a través de los servicios de farmacia de los hospitales, centros de salud y estructuras de atención primaria (Real Decreto-Ley 8/2010, de 20 de mayo: Medidas extraordinarias para la reducción del déficit público). Cabe considerar que pueden existir variaciones entre los precios finales que pueden variar entre Comunidades Autónomas e incluso entre distintos hospitales en una misma Comunidad, sin embargo, se ha empleado el (PVL-7,5%)+ 4% IVA) como aproximación, por ser unitario en todo el Estado.

Una evaluación farmacoeconómica con objeto de determinar la eficiencia (relación entre coste y resultados) de nuevas estrategias o de nuevos medicamentos debe contemplar no solamente el coste, sino también la eficacia (Ensayos Clínicos) o efectividad (práctica clínica habitual) de forma conjunta. Así lo demuestra un reciente estudio farmacoeconómico que ha evaluado los costes y la eficiencia de iniciar TAR con las pautas preferentes en pacientes sin tratamiento previo, según el Documento de consenso de Gesida y el PNS de enero de 2012⁸⁹⁷. En este estudio no fueron más eficientes ni las pautas con mayor eficacia clínica ni las más baratas. Si analizamos los datos de forma parcial cometemos el riesgo de llegar a conclusiones erróneas. Un nuevo estudio farmacoeconómico, que evaluará las pautas de inicio recomendadas en el presente Documento de consenso, se publicará de forma simultánea.

En el momento actual, disponemos de múltiples alternativas de elevada eficacia para el control crónico de la infección por el VIH-1. Aunque las decisiones de tratamiento en el caso de la terapia de rescate están muy condicionadas por factores tales como resistencias, adherencia o toxicidad, es probable que en el caso del paciente sin fracaso previo o en situación de primer fracaso pueda incluirse el concepto de eficiencia en la toma de decisiones para seleccionar la alternativa.

TABLAS Y FIGURAS

Tabla 1. Exploraciones complementarias en la valoración inicial y el seguimiento de los pacientes con infección por el VIH-1

• Valoración inicial:

Exploración física completa

- Presión arterial
- Medidas antropométricas (talla, peso y cintura)

Hematimetría

Bioquímica plasmática (incluyendo glucemia, perfil hepático y lipídico)

Análisis elemental de orina y sedimento

Serología: VHB, VHC, VHA, Lúes, CMV y Toxoplasma

Serología de *Trypanosoma cruzi* (si inmigrante de un país endémico)¹

Estudio de poblaciones linfocitarias

Carga viral del VIH-1

Estudio genotípico de resistencia

HLA-B*5701

Mantoux (o quantiferón) y radiografía de tórax

Citología cervical uterina (en la mujer)

Citología anal (considerar)

Valoración de la fibrosis hepática²

• Previamente al inicio del TAR:

Estudio genotípico de resistencia

Determinación de subtipos virales

Tropismo viral (si se prevé utilizar maraviroc en el TAR de primera línea)

• **Seguimiento** (a las 4 semanas del inicio y cada 3-6 meses):

Hematimetría y bioquímica de rutina (con perfil lipídico)

Carga viral del VIH-1 y estudio de poblaciones linfocitarias

Estudio genotípico de resistencia si existe fracaso virológico

Tropismo viral (si existe fracaso virológico)

1. En personas procedentes de áreas con alta prevalencia de infestación por Strongyloides stercoralis se puede considerar la realización de estudio serológico frente a este parásito, sobre todo si se sospecha infestación (p.e. eosinofilia). En la evaluación de un paciente inmigrante sin documentación en su historia previa de vacunación, puede considerarse la valoración de su estado vacunal o ser remitido a un centro adecuado para su valoración.

2. Si existe hepatitis crónica (optativo)

Tabla 2. Indicaciones de las pruebas de resistencia en la práctica clínica

- En el momento del diagnóstico de la infección por el VIH-1*
- Inicio del TAR*
- Mujeres embarazadas
- En cada fracaso del TAR
- Profilaxis post-exposición (caso fuente)

Tabla 3. Indicaciones de TAR en pacientes asintomáticos con infección crónica por el VIH†

Linfocitos CD4	Indicación	Nivel evidencia
≤ <mark>500</mark>	Recomendar	A-I <mark>/B-I*</mark>
>500	Considerar**	<mark>B-III</mark>

[†]Se recomendará siempre, independientemente de la cifra de linfocitos CD4⁺, en la mujer embarazada, en caso de parejas serodiscordantes con alto riesgo de transmisión, en la nefropatía por VIH y en la hepatitis B que requiera tratamiento

* A-I: si <350 CD4⁺/μL; B-I: si 350-500 CD4⁺/μL

^{*}Todos los pacientes debieran tener un estudio genotípico de resistencia en el momento del diagnóstico y antes de iniciar el tratamiento antirretroviral si éste se difiere

^{**} Algunos expertos recomiendan iniciar TAR es este estrato de CD4⁺, mientras que otros lo recomendarían solo en determinadas situaciones: cirrosis hepática, hepatitis crónica por VHC, carga viral plasmática >10⁵ copias/mL, proporción de CD4⁺ <14%, edad >55 años, riesgo cardiovascular elevado y trastornos neurocognitivos

Tabla 4. Combinaciones de tratamiento antirretroviral de inicio†

3 ^{er} Fármaco	Pauta [‡]	Ensayos clínicos que la sustentan
ITINN	*TDF/FTC/EFV ^{1,2,3}	STARTMRK, ACTG 5202, GS-US-236-0102,
		GILEAD 934, <mark>SINGLE</mark>
	ABC/3TC+EFV ^{1,2,4,5}	ACTG 5202, CNA30024
	TDF/FTC/RPV ^{2,3,6,7}	ECHO, THRIVE, STAR
	TDF/FTC+NVP ^{2,3,8}	ARTEN, VERXVE
IP/r	*TDF/FTC+ATV/r ^{3,7}	CASTLE, ACTG 5202, ARTEN, GS-US-236-0103
		GS-US-216-0114
	*TDF/FTC+DRV/r ³	ARTEMIS
	TDF/FTC+LPV/r ^{3,9}	ARTEMIS, ABT-730, CASTLE, GEMINI, HEAT,
	TDF/FTC+LPV/I	PROGRESS
	ABC/3TC+ATV/r ^{4,7}	ACTG 5202
	ABC/3TC+LPV/r ^{4,9}	KLEAN, HEAT
InInt	*TDF/FTC+RAL ³	STARTMRK, QDMRK, <mark>SPRING2</mark>
	ABC/3TC+RAL ⁴	SPRING 2

- † Ordenado por tercer fármaco. Se recomienda el uso de preparados que combinen fármacos a dosis fijas. No existe en la actualidad suficiente información que permita considerar como equivalentes terapéuticos a FTC y 3TC, por lo que el uso de uno u otro fármaco en los regímenes seleccionados depende fundamentalmente de la experiencia disponible en su uso conjunto con los otros fármacos de la combinación.
- ‡ Los comentarios reflejan aspectos que se deben considerar en la elección de régimen, pero no pretenden ser una guía exhaustiva de las precauciones a tomar en el uso de los fármacos. Para mayor información se recomienda revisar el texto del documento así como las fichas técnicas de los fármacos.
- * Solo estas pautas han sido consideradas como preferentes por la totalidad del panel de expertos.

En otro apartado de estas guías se tratan aspectos de precio y de costes de los diferentes regímenes terapéuticos. Simultáneamente con las guías se publica un artículo en el que se hace un análisis formal de coste/eficacia de las pautas recomendadas como preferentes

- 1 Evitar en mujeres que planean quedarse embarazadas y en pacientes con alteraciones neuropsiquiátricas no estabilizadas. Usar con precaución en pacientes que realicen tareas peligrosas si presentan síntomas de somnolencia, mareos y/o trastornos de la concentración.
- **2** Es preciso realizar previamente un estudio genotípico que descarte mutaciones de resistencia a ITINN.
- 3 Usar TDF con precaución en pacientes con factores de riesgo para insuficiencia renal. Contraindicado si FG <30 ml/min. El uso combinado de IP/r y TDF incrementa particularmente el riesgo de nefrotoxicidad.
- 4 Es preciso realizar previamente determinación de HLA-B*5701. No utilizar si HLA-B*5701 positivo.
- 5 En el estudio ACTG 5202 ABC/3TC se asoció con una mayor frecuencia de fracasos virológicos que TDF/FTC en los pacientes con CVP >100.000 copias/mL.
- Mayor riesgo de fracaso virológico que con TDF/FTC/EFV en pacientes con CVP >100.000 copias/mL. La EMA solo aprueba el uso de RPV en pacientes con CVP <100.000 copias/mL.
- **7** Evitar si se utilizan inhibidores de la bomba de protones.
- 8 No iniciar en mujeres con CD4 >250 células/μL ni en varones con CD4 > 400 células/μL.
- **9** Evitar en pacientes con hiperlipidemia y/o riesgo cardiovascular elevado.

Tabla 5. Inhibidores de la transcriptasa inversa análogos de nucleósido y de nucleótido

Nombre genérico	Zidovudina AZT	Didanosina ddl	Estavudina d4T	Lamivudina 3TC	Emtricitabina FTC	Abacavir ABC	Tenofovir TDF
Nombre comercial	Retrovir® ZidovudinaCom binopharm® *Combivir® **Trizivir®	Videx®	Zerit®	Epivir® Lamivudina Nor- mon® *Combivir® **Trizivir® ***Kivexa®	Emtriva® ****Truvada® ***** Atripla® ****** Eviplera® *******Stribild®	Ziagen® **Trizivir® ***Kivexa®	Viread® ****Truvada® ***** Atripla® ****** Eviplera® ***********************************
Dosis recomendada	250-300 mg BID	<60 Kg.: 250 mg QD ó 125 mg BID >60 Kg: 400 mg QD ó 200 mg BID	<60 Kg: 30 mg BID >60 mg: 40 mg BID	150 mg BID 300 mg QD	200 mg QD	300 mg BID 600 mg QD	300 mg QD
Presentaciones comerciales	caps. 100, 250 mg y comp./caps 300 mg. sol. oral 10 mg/mL vial i.v. (10 mg/mL)	Comp., 50, 100, y 150 mg. cáps enté- ricas de 125, 200, 250 y 400 mg y polvo no tampo- nado para sol. oral (5 ó 10 mg/mL según el volumen añadido).	caps. 20, 30 y 40 mg sol. oral 1mg/mL	comp. 150 mg comp. 300 mg sol. oral 10 mg/mL	cáps 200 mg sol. oral 10mg/mL	comp. 300 mg sol. oral 20 mg/mL	comp. 300 mg
Biodisponibilid. oral	64±10% ^{a, ω}	42 (±12)% ^{a, Ω} (comp. tamponados)	86±18% ^{a,ω}	80-85% ^ω	93% (cáps) ^ω 75% (sol oral) ^ω	83% ^ω	25% en ayunas. ^Ω

Efecto de los	Los alimentos	Videx® en cápsulas	Puede adminis-	Puede tomarse	Puede tomarse	Puede tomarse	La administración
alimentos	grasos pueden reducir la Cmáx un 50%, sin afectar el AUC.	de liberación entérica debe administrarse 2 horas después de comer y no se debe ingerir ningún otro alimento hasta después de otras 1.5 horas (los alimentos reducen un 20-25% sus concentraciones plasmáticas y un 23% las de su metabolito activo intracelular ddA-TP). Probablemente escasa repercusión en el contexto de una terapia triple.	trarse con o sin alimentos.	con o sin alimentos. (Los alimentos prolongan la absorción de 3TC pero no varían su biodisponibilidad).	con o sin alimentos.	con o sin alimentos.	con una comida ligera en grasa no modificó el AUC, mientras que una comida rica en grasa aumentó un 40% el AUC. Ω
Semivida plas- mática	0,5-3 horas ^{c, ω}	1,19 ± 0,21horas ^{a, Ω}	1,3 a 2,3 horas ^ω	5-7 horas ^ω	10 horas ^ω	1,5 horas ^ω	12-18 horas ^ω
Semivida intrace- lular	3 horas ^{&}	25-40 horas ^{&}	3,5 horas ^ω	16-19 horas ^ω	39 horas ^ω	20,6 horas ^ω (carbovir trifosfato)	PBMCs: 10 horas (en células activa- das); 50 horas (en célu- las en reposo) ^ω

Nombre genérico	Zidovudina AZT	Didanosina ddl	Estavudina d4T	Lamivudina 3TC	Emtricitabina FTC	Abacavir ABC	Tenofovir TDF
C _{max}		0,9 microg/mL (3,8 microM) ^{&}	536±146 nanog/mL (con 40 mg/12h)(VIH-1+) ^{a,ω}	2,0 microg/mL (300 mg/24h) ^ω	1,8±0,7 microg/mL ^ω	4,26 microg/mL (600 mg/24h) ^ω	326 nanog/mL ^ω
C _{min}		-	8 ± 9 nanog/mL (con 40 mg/12h) (VIH-1+) Ω	0,04 microg/mL (300 mg/24h) ^ω	0,09±0,07 mi- crog/mL ^ω		64,4 nanog/mL ^ω
AUC	1400±200 na- nog·h/mL ^{a, ω}	2,65 ± 1,07 mi- crog·h/mL ^{a, Ω}	AUC0-12h: 1284± 227 nanog.h/mL (con 40 mg/12h) (VIH-1+) a, ω	AUC _{0-24h} : 8,9 microg·h/mL (300 mg/24h) ^ω	10,0±3,1 mi- crog·h/mL ^ω	11,95 microg·h/mL 600 mg/24h) ^ω	3324 nanog∙h/mL ^ω
Cl ₅₀ frente a VIH-1 in vitro	Cl ₅₀ :0,01 – 0,49 microM ^{c, ω} (0,00267- 0,13 microg/mL)	CI₅₀ :0,01 to 0,1 microM ^{c, ω} (0,00236-0,0236 microg/mL)	Cl ₅₀ :0,002-0,9 microg/mL (0,0089-4 microM) ^Ω	Cl ₅₀ :0,003 to 15 microM (1 μM = 0,23 microg/mL) ^Ω	Cl ₅₀ :0,00032-0,124 microg/mL (0,0013- 0,5 microM) VHB: 0,01 a 0,04 microM. ^ω	Cl₅₀ :0,08 microg/mL (0,26 microM) ^ω	CI ₅₀ :VIH-1 _{IIIB} : 1-6 microM (0,635-3,81 microg/mL) (células linfoides) ^ω 1,1 microM (0,698 microg/mL) (HIV-1 subtipo B en PBMCs). ^ω
Actividad	VIH-1,2 ^ω	VIH-1,2 ^ω	VIH-1,2 ^{&}	VIH-1,2 ^ω VHB ^ω	VIH-1,2 ^ω VHB ^ω	VIH-1,2 ^ω	VIH-1,2 ^ω VHB ^ω
Penetración en LCR (LCR:plasma)	0,6 [0,04 -2,62] ^{b, ω} Grado 4 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (<i>Letendre S Poster 430. Croi 2010</i>)	21 (±0,03)% ^a (tras admin. IV). ^Ω Grado 2 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (<i>Letendre S Poster 430. Croi 2010</i>)	0,39±0,06 ^ω Grado 2 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (<i>Letendre S Poster 430. Croi 2010</i>)	0,12 ^w Grado 2 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (<i>Letendre S Poster 430. Croi 2010</i>)	No se dispone de datos ^ω Grado 3 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (<i>Letendre S Poster 430. Croi 2010</i>)	30-44% ^ω Grado 3 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (<i>Letendre S Poster 430. Croi 2010</i>)	4% Grado 1 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (Letendre S Poster 430. Croi 2010)

Nombre genérico	Zidovudina AZT	Didanosina ddl	Estavudina d4T	Lamivudina 3TC	Emtricitabina FTC	Abacavir ABC	Tenofovir TDF
Metabolización	Glucuronidación hepática	Hepática 50%	Hepática 50%	Hepática 5-10%	Hepática 13%	Glucuronidación hepática Alcohol deshidro- genasa	El TDF (pro fárma- co) es rápidamen- te hidrolizado a tenofovir por las esterasas plasmá- ticas.
Excreción	Renal (15% inalterado)	Renal (50% inalterado)	Renal (50% inalterado)	Renal (70% inalterado)	Renal 86%	Renal 83% (2% inalterado y 81% metabolitos)	70-80% renal inal- terado
Efectos adversos	Mielosupresión: anemia y/o neu- tropenia a dosis elevadas Cefalea Mareo Intolerancia gas- trointestinal. Lipodistrofia Acidosis láctica con esteatosis hepática ¹	Pancreatitis Hiperuricemia Neuropatía periférica Diarrea Náuseas Lipodistrofia Acidosis láctica con esteatosis hepática	Neuropatía periférica Pancreatitis Lipodistrofia Acidosis láctica con esteatosis hepática ¹	Intolerancia digestiva Cefalea Fatiga Dolor abdominal Lipodistrofia Acidosis láctica con esteatosis hepática ¹	Cefalea Intolerancia digestiva Exantema cutáneo Elevación CPK Anemia/neutropenia Lipodistrofia Acidosis láctica con esteatosis hepática ¹	Hipersensibilidad (5-8%) Lipodistrofia Acidosis láctica con esteatosis hepática ¹	Intolerancia diges- tiva Cefalea Fatiga Dolor abdominal Proteinuria

Nombre genérico	Zidovudina AZT	Didanosina ddl	Estavudina d4T	Lamivudina 3tC	Emtricitabina FTC	Abacavir ABC	Tenofovir TDF ²
Interacciones							
Asociaciones no recomendables o Contraindicadas#	Estavudina Evitar la asociación con TPV/r por disminución de los niveles de zidovu- dina, a no ser que no se disponga de otros análogos. Inhibidores pro- teasa VHC: boce- previr y telaprevir (aumento del riesgo de anemia)	Alopurinol Estavudina+/- hidroxiurea Ribavirina Estavudina Tenofovir (si la asociación fuera imprescindible, ajustar dosis de didanosina)	Zidovudina Didanosina +/- hidroxiurea	Emtricitabina Cotrimoxazol (dosis altas; a dosis profilácticas NRAD)	Lamivudina	Evitar la asocia- ción con tiprana- vir/ritonavir por disminución de los niveles de abaca- vir, a no ser que no se disponga de otros análogos.	Adefovir Atazanavir no potenciado Didanosina (si la asociación fuera imprescindible, ajustar dosis de didanosina) Debe evitarse el uso concomitante o reciente de teno- fovir con nefrotó- xicos (p. ej. ami- noglicósidos, anfo- tericina B, foscar- net, ganciclovir, pentamidina, van- comicina, cidofovir o interleucina-2). Si fuera inevitable, se debe controlar semanalmente la función renal.
	Terapia con tres and riesgo de fracaso vir	J	estavudina+abacavir,	abacavir+lamivudina-	+tenofovir y didanosi	na+ lamivudina+teno	fovir (aumento del

AUC: Area bajo la curva; **BID**: dos veces al día; **LCR**: líquido cefalorraquídeo; **NRAD**: No requiere ajuste de dosis; **QD**: una vez al día. *Combivir®: asociación a dosis fijas de AZT 300 mg y 3TC 150 mg. ***Trizivir®: asociación a dosis fijas de AZT 300 mg, 3TC 150 mg y abacavir 300 mg. ***Kivexa®: asociación a dosis fijas de 3TC 300 mg y abacavir

600 mg; *****Truvada®: asociación a dosis fijas de tenofovir 300 mg y emtricitabina 200 mg. *****Atripla®: asociación a dosis fijas de tenofovir 300 mg, emtricitabina 200 mg y efavirenz 600 mg. ******

Eviplera® (aprobado su uso en España en enero de 2013): asociación a dosis fijas de tenofovir 300 mg, emtricitabina 200 mg y rilpivirina 25 mg. ******

Stribild® (todavía no comercializado en España en enero de 2013): asociación a dosis fijas de: tenofovir 300 mg, emtricitabina 200 mg, elvitegravir 150 mg, cobicistat 150 mg.

[#] No se han incluido en todas las posibles interacciones con los FAR, dado que existen diversas páginas web dedicadas a esta finalidad que pueden facilitar la búsqueda: www.interaccionesvih.com (en castellano) y www.hiv-druginteractions.org (en inglés). Debido a que la información científica relacionada con los fármacos antirretrovirales se renueva constantemente, se recomienda consultar también la ficha técnica de los fármacos y la información actualizada ofrecida por las distintas compañías farmacéuticas y las autoridades sanitarias.

^a Expresado como media \pm DE si no se indica lo contrario

^b Expresado como mediana ± rango intercuartil

^c Expresado como rango

¹ Reacción poco frecuente aunque potencialmente muy grave.

²Tenofovir se elimina mayoritariamente por vía renal y no actúa como substrato, inductor ó inhibidor del citocromo P-450, por lo que no se espera que tenga interacciones relevantes de carácter metabólico.

^ω Información procedente de la ficha técnica europea. EPARS: European Public Assessment Reports. Disponble en: <a href="http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medi

^ΩInformación procedente de la ficha técnica americana (fuentes: FDA and First Data Bank, Inc). Disponible en: http://www.rxlist.com/drugs/alpha a.htm .Con acceso [14.11.2012].

Tabla 6. Inhibidores de la transcriptasa inversa no nucleósidos

Nombre genérico	Nevirapina	Efavirenz	Etravirina	Rilpivirina
Nombre comercial	Viramune ®	Sustiva ® *Atripla®	Intelence ®	Edurant® *Eviplera®
Dosis recomendada	200 mg QD x 14 días seguidas de 200 mg BID	600 mg QD	200 mg BID (dispersable en agua)	25 mg QD
Presentaciones comerciales	comprimidos 200 mg suspensión 10 mg/mL	cápsulas 50, 100 y 200 mg y comp. 600 mg	comprimidos 100 y <mark>200</mark> mg	comprimidos 25 mg
Biodisponibilidad oral	93 ± 9% ^{a,ω} (comprimidos) 91 ± 8% ^a (solución oral)	22% (dosis unica de 600 mg con comida de alto contenido graso) ^ω 17% (dosis unica de 600 mg con comida normal) ^ω	No se ha determinado su biodis- ponibilidad absoluta en humanos ^ω	No se ha determinado su biodisponibilidad absoluta en humanos ^ω
Efecto de los alimentos	Se puede administrar con o sin alimentos. (Al administrar nevirapina con un desayuno rico en grasas, el grado de absorción fue comparable al observado en condiciones de ayuno).	Evitar las comidas ricas en grasa, pues la biodisponibilidad aumenta un 50% y podría aumentar la toxicidad.	Debe administrarse con alimentos. El AUC y la Cmax de la formulación usada en estudios de Fase III (F060) fueron un 51 y un 44% menores cuando se administró en ayunas, y un 25 y 38% menores tras un desayuno alto en fibra (en comparación con un desayuno estándar). Las diferencias en las concentraciones de ETR administrado tras una comida con alto contenido lipídico, tras un desayuno estándar o tras un croissant no fueron clínicamente significativas.	<mark>rica en proteínas fue un</mark>
Nombre genérico	Nevirapina	Efavirenz	Etravirina	Rilpivirina

Semivida plasmática	25-30 horas (tras dosis múltiples) ^ω	40-55 horas (tras dosis múltiples) ^ω	30-40 horas ^ω	45 horas ^ω
Schiivida piasmatica	45 horas tras una dosis única. La	52-76 horas tras una dosis única. La	30 40 110103	13 110103
	diferencia se debe a la autoinduc-	diferencia se debe a la autoinducción		
	ción de su propio metabolismo.	de su propio metabolismo. $^{\Omega}$		
C _{max}	5,74 microg/mL (5,00-7,44) (200	4,07 microg/mL ^Ω	1	-
Cmax	mg/12h) ^ω	12,9 ± 3,7 microM (VIH-1+) ^{a, ω}		_
	111g/1211)	12,9 ± 3,7 IIICIOW (VIN-1+)		
C _{min}	3,73 microg/mL (3,20-5,08) (200	5,6 ± 3,2 microM (1,77 microg/mL)	296,74±377,52 nanog/mL (VIH-	79 ± 35 nanog/mL (VIH-
	mg/12h) ^ω	(VIH-1+) ^{a, ω}	$\left(1+\right)^{a,\Omega}$	1+) ^{a,Ω}
AUC	109,0 microg.h/mL $^{\omega}$ (96,0-143,5)	184 ± 73 microM·h (58,14 mi-	4531,53±4543,69	2235 ± 851 nanog.h/mL
	(200 mg/12h) ^ω	crog.h/mL) ^{a, ω}	nanog.h/mL(VIH-1+) ^{a,Ω}	(VIH-1+) ^{a,Ω}
CI _{50/90} frente a VIH-1 in		Cl ₉₀₋₉₅ : 0,00014-0,0021 microg/mL	Cl ₅₀ : 0,9 a 5,5 nanoM. (0,39-2,39	CI ₅₀ : 0,73 nanoM (0,27
vitro	CI_{50} :0,063 microM $^{\omega}$ (0,017	(0,00046-0,0068 microM) ^ω	nanog/mL) ^ω	nanog/mL). ^ω
	microg/mL)			
Actividad	VIH-1 ^ω	VIH-1 ^ω	VIH-1 ^ω	VIH-1 ^ω
Penetración en LCR	45% ± 5% ^ω	0,69% (entre 0,26 y 1,19%) ^ω Las con-	No disponible ^ω	No ha sido evaluado en
(LCR:plasma)	Grado 4 de penetración en LCR se-	centraciones de EFV en LCR exceden la	Grado 2 de penetración en LCR	humanos.
(10	gún la clasificación del estudio	Cl ₅₀ para la cepa salvaje del virus:	según la clasificación del estudio	En investigación: (Clinical-
	CHARTER (de 1 a 4, menor a mayor)	LCR/plasma: 0.005 (IQR 0.0026-0.0076;	CHARTER (de 1 a 4, menor a ma-	Trials.gov NCT01562886)
	(Letendre S Poster 430. Croi 2010)	n=69). CSF/ Cl _{50:} 26 (IQR 8-41),	yor) (Letendre S Poster 430. Croi	maisigov recrossozooo,
		tomando $Cl_{50} = 0.51$ ng/mL (<i>Best BM.</i> J.	2010)	
		Antimicrob. Chemother. (2010) doi:		
		10.1093/jac/dkq434)		
		Grado 3 de penetración en LCR según la		
		clasificación del estudio CHARTER (de 1		
		a 4, menor a mayor) (Letendre S Poster		
		430. Croi 2010)		
Metabolización	Hanática CVD2AA	Hepática CYP3A4	Hepática:	Hepática CYP3A4 ^ω
IVIELACION/ACION			I HEDALICA.	HEDALICA CYPSA4
	Hepática CYP3A4	1 .	1 · · · · · · · · · · · · · · · · · · ·	-
	(Inducción)	(inducción-inhibición)	- inducción de CYP3A4;	(Probablemente no modifi-
	(Inducción)	(inducción-inhibición)	- inducción de CYP3A4; - Inhibición: 2C9, 2C19	(Probablemente no modifi- que los niveles de otros
Excreción	· · · · · · · · · · · · · · · · · · ·	1 .	- inducción de CYP3A4;	(Probablemente no modifi-

			Excrección fundamentalmente por heces	de 25 mg/24h). ^ω Renal 6% (<1% inalterado) ^ω
Efectos adversos	Exantema Aumento de transaminasas y Hepatitis aguda	Exantema Síntomas neuropsiquiátricos Aumento de las transaminasas Teratogenicidad en monos	Exantema	Nauseas (9%), mareos (8%), pesadillas (8%), cefalea (6%) Insomnio (5%), diarrea (5%) Prolongación del intervalo QTc en el ECG a dosis supraterapéuticas. A la dosis aprobada de 25 mg/dia el efecto sobre el QTc no es clinicamente relevante.

Nombre genérico	Nevirapina	Efavirenz	Etravirina	Rilpivirina ^ω
Interacciones				
Asociaciones contrain-	Anticonceptivos orales	Anticonceptivos orales	Carbamacepina	Carbamacepina
dicadas [#]	Atazanavir/ritonavir	Astemizol	Claritromicina (para tratamiento de	Dexametasona por vía sistémi-
	Claritromicina (para tratamiento de	Atazanavir (considerar ATV/r 400/200	MAC, valorar azitromicina)	ca (excepto dosis única)
	MAC, valorar azitromicina)	mg c/24h)	Dexametasona ((considerar alternati-	Efavirenz
	Efavirenz	Inhibidores proteasa VHC: boce-	va a dexametasona, especialmente	Etravirina
	Etravirina	previr	en uso crónico)	Esomeprazol,
	Fosamprenavir no potenciado	Carbamacepina	Diacepam (considerar alternativa a	Fenitoína Penitoína
	Hypericum (Hierba de San Juan)	Cisaprida	diacepam)	Fenobarbital
	Inhibidores proteasa VHC: bocepre-	Claritromicina (para tratamiento de	Efavirenz	Hierba de San Juan o Hipérico
	vir y telaprevir (por ausencia de	MAC, valorar azitromicina)	Fenitoina	(Hypericum perforatum)
	datos)	Deriv. Ergotamina	Fenobarbital	Inhibidores proteasa VHC:
	Ketoconazol	Etravirina	Hypericum (Hierba de San Juan)	ausencia de datos con boce-
	Itraconazol	Fosamprenavir no potenciado	Itraconazol	<mark>previr</mark>
	Rifampicina	Hipericum (hierba de S. Juan)	Ketoconazol	Lansoprazol
	Rilpivirina	Itraconazol	Nevirapina	Nevirapina Nevirapina
	Saquinavir(como único IP) ¹	Ketoconazol	Rifampicina	Omeprazol,
	Voriconazol	Midazolam	Rilpivirina	Oxcarbacepina
		Nevirapina	Tipranavir/ritonavir	Pantoprazol Pantoprazol
		Pimozida		Rabeprazol Rabeprazol
		Posaconazol	IP no potenciados	Rifabutina
		Rilpivirina Rilpiv		Rifampicina
		Saquinavir no potenciado		Rifapentina
		Terfenadina		
		Triazolam		
		Voriconazol (evitar/ajustar dosis)		

AUC: área bajo la curva de concentraciones plasmáticas frente al tiempo (exposición al fármaco); BID: dos veces al día; LCR: líquido cefalorraquídeo; QD: una vez al día.

*No se han incluido en todas las posibles interacciones con los FAR, dado que existen diversas páginas web dedicadas a esta finalidad que pueden facilitar la búsqueda: www.interaccionesvih.com (en castellano) y www.hiv-druginteractions.org (en inglés). Debido a que la información científica relacionada con los fármacos antirretrovirales se renueva constantemente, se recomienda consultar también la ficha técnica de los fármacos y la información actualizada ofrecida por las distintas compañías farmacéuticas y las autoridades sanitarias.

- * Atripla®: asociación a dosis fijas de tenofovir 300 mg, emtricitabina 200 mg y EFV 600 mg.
- ** Eviplera®: asociación a dosis fijas de tenofovir 300 mg, emtricitabina 200 mg y rilpivirina 25 mg.
- ^a Expresado como media \pm DE si no se indica lo contrario
- ¹ Saquinavir (Invirase®) puede asociarse con NVP si se combina con ritonavir (SQV/RTV 1000/100 mg c/12h), en cuyo caso datos preliminares han mostrado buenos resultados.
- ² Saguinavir puede asociarse con la dosis habitual de EFV si se combina con ritonavir (1000/100-200 mg c/12h).
- ^ω Información procedente de la ficha técnica europea. EPARS: European Public Assessment Reports. Disponble en: http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines/medicines landing page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines landing page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines landing page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines landing page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines landing page.jsp&murl=menus/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medici
- ^ΩInformación procedente de la ficha técnica americana (fuentes: FDA and First Data Bank, Inc). Disponible en: http://www.rxlist.com/drugs/alpha a.htm .Con acceso [14.11.2012].
- [&]Guardiola JM, Soriano V (Eds). Tratamiento de la infección por VIH-SIDA. Fármacos y combinaciones. Décima edición. Barcelona: Publicaciones Permanyer 2007.

Tabla 7. Inhibidores de la proteasa (1ª parte): indinavir, ritonavir, saquinavir, nelfinavir y fosamprenavir

Nombre genérico	Indinavir	Ritonavir	Saquinavir	Nelfinavir	Fosamprenavir
Nombre comer- cial	Crixivan ®	Norvir®	Invirase ®	Viracept®	Telzir®
Dosis Recomendación	800 mg TID IDV/r 800/100 BID Si no potenciado, debe tomarse con estómago vacío (restricción dietética) Ingesta abundante de líquidos no carbónicos	Como potenciador de otros IP : 100 ó 200 mg con cada dosis de IP Como IP (600 mg BID) se desacon- seja	SQV/r 1000/100 BID Tomar con comida grasa.	750 mg TID ó 1250 mg BID Tomar con comida grasa	FPV/r 700/100 mg c/12h Con ó sin alimentos
Presentación comercial	cáps. 200 y 400 mg	sol. oral 80 mg/ml cáps. 100 mg comp 100 mg	comp 200 mg comp 500 mg	comp 500 mg polvo (1 cuch 1g =50 mg de NFV)	comp 700 mg suspensión oral 50 mg/mL
Biodisponibilidad Oral	65 % (IC 90 %, 58 a72 %), tras dosis única de 800 mg. ^ω	No se ha determinado su biodis- ponibilidad absoluta en humanos w	4% (1-9%) ^c en ausencia de RTV ^ω No se ha determinado su biodisponibilidad absoluta de SQV potenciado con RTV en humanos ^ω	No se ha determinado su biodisponibilidad absoluta en humanos ^ω	No se ha determinado su biodispo- nibilidad absoluta en humanos ^ω
Efecto de los alimentos	No potenciado y en presencia de alimentos grasos el AUC se reduce un 77%, por lo que debe administrarse en ayunas o con una comida ligera de bajo contenido graso. Cuando se administra potenciado con ritonavir puede tomarse junto con las comidas. $^{\Omega}$	En presencia de alimentos se reduce el AUC entre un 21 y un 23%. Ω El sabor amargo de Norvir solución puede enmascararse si se mezcla con un batido de chocolate. ω	En voluntarios sanos, el AUC aumentó más de 6 veces al tomarlo con una comida grasa, en comparación con su ingesta en ayunas. Se recomienda tomar saquinavir dentro de las 2h después de comer. Ω	En presencia de alimentos aumenta el AUC entre 2 y 5 veces (aumento mayor cuanto mayor contenido calórico), por lo que nelfinavir debe administrarse con comida. $^{\Omega}$	Comprimidos: la administración con alimentos no modificó significativamente el AUC, por lo que puede ingerirse con o sin alimentos. Solución oral: en presencia de alimentos el AUC se redujo un 28% en comparación con su ingesta en ayunas. En adultos, se recomienda tomar la solución en ayunas y en los niños con alimentos porque mejora la tolerabilidad. Ω

Nombre ge-	Indinavir	Ritonavir	Saquinavir	Nelfinavir	Fosamprenavir
nérico					
Semivida plasmá- tica	1,8 ± 0,4 horas ^{a, ω}	5 horas (100 mg/24h) ^ω 5 horas (100 mg/12h) ^ω 4 horas (200 mg/24h) ^ω 8 horas (200 mg/12h) ^ω	7 horas ^ω	3,5-5 horas ^ω	7,7 horas (FPV) ^ω 15 – 23 horas (FPV/r) ^ω
C _{max}	11144 (IC 90% = 9192 a 13512) nanoM (=7,9 microg/mL) con IDV 800 mg/8h ^ω 19001 (IC 90% = 17538 a 20588) nanoM (=13,5 microg/mL) con IDV/r 800/100 mg/12h ^ω	En VIH-1+: $0.84 \pm 0.39 \text{ microg/ml}^{a}$ (100 mg/24h) $^{\omega}$ 0,89 microg/ml (100 mg/12h) $3.4 \pm 1.3 \text{ microg/ml}^{a}$ (200 mg/24h) $^{\omega}$ 4,5 \pm 1,3 microg/ml (200 mg/12h)	En VIH-1+: 5208 nanog/ml (1.536- 14.369) ^{c,} (SQV/r 1000/100 mg/12h con comida rica en grasa) ^ω	3.0 ± 1.6 microg/ml (750 mg/8h) $^{\omega}$ 4.0 \pm 0.8 microg/ml (1250 mg/12h) $^{\omega}$	FPV/r 700/100 mg c/12h: 6,08 microg/ml (IC95%: 5,38 a 6,86) ^ω FPV/r 1400/100 mg c/24h: 7,93 microg/ml (IC95%:7,25 a 8,68) ^Ω FPV/r 1400/200 mg c/24h: 7,24microg/ml (IC95%:6,32 a 8,28) ^Ω
C _{min}	211 (IC 90% = 163 a 274) nM (0,15 microg/mL), con IDV 800 mg/8h ^ω 2274 (IC90% = 1701 a 3042) nM (=1,6 microg/mL, con IDV/r 800/100 mg/12h ^ω	En VIH-1+: $0.08 \pm 0.04 \text{ microg/ml}^a$ (100 mg/24h) $^\omega$ 0,22 microg/ml (100 mg/12h) $0.16 \pm 0.10 \text{ microg/ml}^a$ (200 mg/24h) $^\omega$ $0.6 \pm 0.2 \text{ microg/ml}^a$ (200 mg/12h) $^\omega$ Las Cmin descienden con el tiempo, posiblemente debido a la inducción enzimática, pero parecen estabilizarse al final de 2 semanas. $^\omega$	En VIH-1+: 1179 nanog/ml (334- 5.176) ^c (SQV/r 1000/100 mg/12h con comida rica en grasa) ^ω	1.4 ± 0.6 microg/ml con la dosis de la mañana y 1.0 ± 0.5 microg/ml con la de la tarde (750 mg/8h) $^{\omega}$ 2.2 ± 1.3 microg/ml con la dosis de la mañana y 0.7 ± 0.4 microg/ml con la de la tarde. $^{\omega}$ (1250 mg/12h) $^{\omega}$	FPV/r 700/100 mg c/12h: 2,12 microg/ml (IC95%:1,77 a 2,54) $^{\omega}$ FPV/r 1400/100 mg c/24h: 0,86 microg/ml (IC95%:0,74 a 1,01) $^{\Omega}$ FPV/r 1400/200 mg c/24h: 1,45 microg/ml (IC95%:1,16 a 1,81) $^{\Omega}$

Nombre genérico	Indinavir	Ritonavir	Saquinavir	Nelfinavir	Fosamprenavir
AUC	AUC _{0-8h} de 27813 nanoM*h IC 90% = 22185 a 34869) (=19803 na- nog*h/mL)(con IDV 800 mg/8h. u 116067 nanoM*h (IC90% = 101680 a 132490) (=82639 nanog*h/mL)(con IDV/r 800/100 mg/12h. u	En VIH-1+: $AUC_{24h} 6,6 \pm 2,4 \text{ microg.h/ml}^a (100 \text{ mg/24h})^\omega \\ AUC_{12h} 6,2 \text{ microg.h/ml}^a (100 \text{ mg/12h})^\omega \\ AUC_{24h} 20,0 \pm 5,6 \text{ microg.h/ml}^a (200 \text{ mg/24h})^\omega \\ AUC_{12h} 21,92 \pm 6,48 \text{ microg.h/ml}^a (200 \text{ mg/12h})^\omega \\ (200 \text{ mg/12h})^\omega \\ $	En VIH-1+: AUC _{0-12h} 34926 nanog·h/ml (11826-105992) ^c (SQV/r 1000/100 mg/12h con comi- da rica en grasa) ^ω	AUC24h 43,6 ± 17,8 microg·h/ml (750 mg/8h) ω AUC24h 52,8 ± 15,7 microg·h/ml 1250 mg/12h)ω	$\begin{array}{l} \text{FPV/r 700/100 mg c/12h: AUC}_{0.12h} 39,6 (\text{IC95\%:34,5 a 45,3}) \\ \text{microg .h. /ml}^{ \omega} \\ \text{FPV/r 1400/100 mg c/24h:} \\ \text{AUC}_{0.24h} 66,4 \text{microg.h/mL} \\ \text{(IC95\%:61,1 a72,1)}^{ \Omega} \\ \text{FPV/r 1400/200 mg c/24h:} \\ \text{AUC}_{0.24h} 69,4 \text{microg.h/mL} \\ \text{(IC95\%:59,7 a 80,8)}^{ \Omega} \end{array}$
Cl _{50/90/95} frente a VIH- 1 <i>in vitro</i>	Cl₉₅ : 50-100 nanoM ^ω (=35-71 nanog/mL)		Cl ₅₀ : 1-10 nM $^{\omega}$ (=0,76-7,6 nanog/mL) Cl ₅₀ ajustada al suero (50 % suero humano) 25-250 nM (=19,2-192 nanog/mL) Cl ₉₀ : 5-50 nM $^{\omega}$ (=3,8-38 nanog/mL)	Cl ₉₅ : 58 nM (7 - 111 nM) ^{c, ω} (=38,5 nanog/mL)	Cl ₅₀ entre 0,012 a 0,08 microM en células con infección aguda y 0,41 microM en células con infección crónica ω
Actividad	VIH-1.2 ^ω	VIH-1,2, aunque en la actualidad se utiliza como potenciador far- macocinético. ^ω	VIH-1,2 ^ω	VIH-1,2 ^ω	VIH-1,2 ^{ω, Ω}
Penetración en LCR (LCR:plasma)	No hay datos ^ω IDV grado 3 e IDV/r grado 4 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (Letendre S Poster 430. Croi 2010)	Grado 1 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (Letendre S Poster 430. Croi 2010)	Insignificante con Invirase 600 mg/8h. ^ω SQV±RTV: grado 1 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (Letendre S Poster 430. Croi 2010)	Grado 1 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (Letendre S Poster 430. Croi 2010)	Penetración insignificante ^ω Grado 2 de penetración en LCR según la clasificación del estu- dio CHARTER (de 1 a 4, menor a mayor) (<i>Letendre S Poster</i> 430. Croi 2010)
Metabolización	CYP3A4	CYP3A4	CYP3A4	CYP3A4	CYP3A4

Nombre genérico	Indinavir	Ritonavir	Saquinavir	Nelfinavir	Fosamprenavir
Efectos Adversos	Nefrolitiasis Intolerancia G-I. Hiperbilirrubinemia Hiperglucemia Dislipemia Lipodistrofia Posible aumento del sangrado en hemofílicos	(En dosis reducidas la prevalencia de los efectos adversos es muy baja) Intolerancia G-I (vómitos, diarrea) Parestesias orales Hepatitis Hiperglucemia Dislipemia Lipodistrofia Posible aumento del sangrado en hemofílicos	Intolerancia G-I (diarrea) Cefalea ↑ transaminasas Hiperglucemia Dislipemia Lipodistrofia Posible aumento del sangrado en hemofílicos	Diarrea Hiperglucemia Dislipemia Lipodistrofia Posible aumento del sangrado en hemofílicos	Intolerancia GI (diarrea) Exantema autolimitada (usar con precaución en pacientes con alergia conocida a las sulfamidas) Cefalea Hiperglucemia Dislipemia Lipodistrofia Posible aumento del sangrado en hemofílicos

Nombre genérico	Indinavir	Ritonavir	Saquinavir	Nelfinavir	Fosamprenavir
Interacciones					
	Alfuzosina (IDV/r)	Alfuzosina	Ajo, suplementos (utilizar	Alfuzosina	Alfuzosina
Asociaciones contraindica-	Alprazolam (IDV+/-RTV)	Amiodarona	SQV/r)	Amiodarona	Amiodarona
das [#]	Amiodarona (IDV+/-RTV)	Anticonceptivos orales	Alfentanilo	Anticonceptivos orales	Anticonceptivos orales
	Astemizol	Astemizol	Alfuzosina	Astemizol	Astemizol
	Atazanavir	Cisaprida	Amiodarona	Bupropion	Cisaprida
	Cisaprida	Cloracepato	Amitriptilina	Carbamazepina	Colchicina (si insuf. renal o
	Colchicina (si insuf. renal o	Clozapina	Astemizol	Cisaprida	hepática)
	hepática)	Colchicina (si insuf. renal o	Atazanavir/ritonavir	Colchicina (si insuf. renal o	Deriv. ergotamina
	Cloracepato (IDV/r)	hepática)	Carbamacepina	hepática)	Flecainida (FPV/r)
	Clozapina (IDV/r)	Dextropropoxifeno	Cisaprida	Deriv. Ergotamina	Halofantrina
	Deriv. Ergotamina (IDV+/-	Diacepam	Claritromicina	Fenobarbital	Hypericum (Hierba de San
	RTV)	Deriv. ergotamina	Clozapina	Halofantrina	Juan)
	Dextropropoxifeno (IDV/r)	Disulfiram	Colchicina (si insuf. renal o	Hypericum (Hierba de San	Inhibidores proteasa VHC:
	Diacepam (IDV/r)	Encainida	hepática)	Juan)	telaprevir contraindicado
	Encainida (IDV/r)	Estazolam,	Dapsona	Inhibidores proteasa	y evitar boceprevir por
	Estazolam (IDV/r)	Éxtasis	Dexametasona	VHC: boceprevir y tela-	ausencia de datos.
	Flecainida (IDV/r)	Flecainida	Deriv. Ergotamina	previr (por ausencia de	Lumefantrina
	Fluracepam (IDV/r)	Fluracepam	Disopiramida	datos)	Lopinavir/r
	Halofantrina	Fluticasona	Efavirenz	Lovastatina	Lovastatina
	Hypericum (Hierba de San	Halofantrina	Eritromicina	Lumefantrina	Midazolam oral
	Juan)	Hypericum (Hierba de San	Fenitoína	Midazolam oral	Pimozida
	Inhibidores proteasa	Juan)	Fenobarbital	Omeprazol y afines	Propafenona (FPV/r)
	VHC: boceprevir y tela-	Inhibidores proteasa VHC:	Fenotiazinas	Pimozida	Quinidina
	previr (por ausencia de	sólo está permitido el uso	Fentanilo	Quinidina	Rifampicina
	datos)	de ATV/r con telaprevir.	Flecainida	Rifampicina	Salmeterol
	Lovastatina (IDV+/-RTV)	Lovastatina	Fluticasona	Salmeterol	Sildenafilo (hipertensión
	Lumefantrina	Lumefantrina	Halofantrina	Sildenafilo (hipertensión	pulmonar)
	Meperidina (IDV/r)	Meperidina	Haloperidol	pulmonar)	Simvastatina
	Midazolam oral(IDV+/-	Metanfetamina	Hypericum (Hierba de San	Simvastatina	Terfenadina
	RTV)	Midazolam oral	Juan)	Terfenadina	Triazolam
	Pimozida (IDV+/-RTV)	Pimozida	Imipramina	Triazolam	Voriconazol (FPV/r)

Piroxicam (IDV/r) Propafenona (IDV/r) Quinidina (IDV/r) Rifampicina (IDV+/-RTV) Salmeterol Sildenafilo (hipertensión pulmonar) Simvastatina (IDV+/-RTV) Terfenadina Triazolam(IDV+/-RTV)	Piroxicam Propafenona Quinidina Salmeterol Sildenafilo (hipertensión pulmonar) Simvastatina Terfenadina Triazolam Voriconazol Zolpidem	Inhibidores proteasa VHC: boceprevir y telaprevir (por ausencia de datos) Lidocaina(sistémica) Lopinavir/ritonavir Lovastatina Lumefantrina Metadona Midazolam oral Nevirapina Omeprazol y afines Pentamidina Pimozida Propafenona Quinidina Rifampicina Salmeterol Sildenafilo Simvastatina Sotalol Tadalafilo Terfenadina Tiroidazina Trazodona Triazolam Vardenafilo Voriconazol Ziprasidona Medicamentos que prolonguen el intervalo QT ó PR.	
--	--	---	--

AUC: área bajo la curva; BID: dos veces al día; LCR: líquido cefalorraquídeo.

^{*}No se han incluido en todas las posibles interacciones con los FAR, dado que existen diversas páginas web dedicadas a esta finalidad que pueden facilitar la búsqueda: www.interaccionesvih.com (en castellano) y www.hiv-druginteractions.org (en inglés). Debido a que la información científica relacionada con los fármacos antirretrovira-

les se renueva constantemente, se recomienda consultar también la ficha técnica de los fármacos y la información actualizada ofrecida por las distintas compañías farmacéuticas y las autoridades sanitarias.

 $^{^{\}rm a}$ Expresado como media \pm DE si no se indica lo contrario

 $^{^{\}rm b}$ Expresado como mediana \pm rango intercuartil

^c Expresado como rango

^ω Información procedente de la ficha técnica europea. EPARS: European Public Assessment Reports. Disponble en: http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines/medicines landing page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines/medicines landing page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines landing page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines landing page.jsp&murl=menus/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines landing page.jsp&murl=menus/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medici

^{\Omega}Información procedente de la ficha técnica americana (fuentes: FDA and First Data Bank, Inc). Disponible en: http://www.rxlist.com/drugs/alpha-a.htm .Con acceso [14/11/2012].

[®]Guardiola JM, Soriano V (Eds). Tratamiento de la infección por VIH-SIDA. Fármacos y combinaciones. Décima Edidión. Barcelona: Publicaciones Permanyer 2007.

Tabla 7. Inhibidores de la proteasa (2ª parte): lopinavir/r, atazanavir, darunavir, tipranavir

Nombre genéri- co	Lopinavir	Atazanavir	Darunavir	Tipranavir
Nombre comercial	Kaletra®	Reyataz®	Prezista®	Aptivus®
Dosis	400/100 mg c/12h 800/200 mg /24 h	300/100 mg c/24 h ó 400 mg c/24h Nota: En un estudio se observó que tan sólo un 38% de los pacientes tratados con ATV no potenciado alcanzaron una Cmin>150 ng/mL.	800/100 mg/24 horas* 600/100 mg c/12h (en pacientes pretratados).	TPV/r 500/200 mg c/12h
Recomendación	Tomar con o sin comida	Tomar con comida	Tomar con comida	Tomar con comida
Presentación co- mercial	comp 200/50 mg comp 100/25 mg sol. oral 80/20 mg/ml	cáps 150, 200 y 300 mg	Comp 75, 150, 400 y 600 mg	cáps 250 mg
Biodisponibilidad Oral	No se ha determinado su biodisponibilidad absoluta en humanos. $^{\omega}$	68% (57-80%) ^{&}	37% (DRV solo, dosis única 600 mg) 82% (DRV/r 600/100 mg/12h). ^ω	No se ha determinado su biodisponibilidad absoluta en humanos. $^{\Omega}$
Efecto de los alimentos	Solución: debe administrarse con alimentos. ^ω En comparación con la administración en ayunas, la administración con alimentos de contenido moderado en grasa aumentó un 80% el AUC y los alimentos ricos en grasa la aumentaron un 130%. ^Ω Comprimidos: pueden administrarse con o sin alimentos. ^ω	ATV: 400 mg/24h: en comparación con la administración en ayunas, la administración con alimentos de contenido ligero en grasa aumentó un 70% el AUC y los alimentos ricos en grasa la aumentaron un 35%. ATV/r: 300/100 mg/24h: en comparación con la administración en ayunas, la administración con alimentos de contenido ligero en grasa aumentó un 33% el AUC y los alimentos ricos en grasa prácticamente no la modificaron. Ω	Se recomienda administrarlo con alimentos. Los alimentos aumentaron un 30% el AUC, sin que influyera el tipo de alimento. $^{\Omega}$	Los alimentos mejoran la tolerabilidad, por lo que TPV/r debe administrarse con alimentos. ^ω
Semivida plasmáti- ca	5-6 horas ^ω	6,5 horas (ATV 400 mg/24h)(VIH-1+) $^{\Omega}$ 12 horas (ATV/r 300/100 mg/24h)(VIH-1+) $^{\omega}$	15 horas (DRV/r 600/100 mg/12h) ^ω	5,5 horas en mujeres y 6,0 horas en hombres (TPV/r 500/200 mg/12h) ^ω

Nombre genéri- co	Lopinavir	Atazanavir	Darunavir	Tipranavir
C _{max}	12,3 \pm 5,4 microg/ml (400/100 mg/12h) ^{a, \omega} 9,8 \pm 3,7 \u03bcpg/mL(400/100 mg/12h)(VIH-1+) ^{a, \Omega} 11,8 \pm 3,7 microg/ml (800/200 mg/24h)(VIH-1+) ^{a, \Omega}	En VIH-1+: 4466 nanog/ml (ATV/r 300/100 mg/24h) ^ω 3152±2231 nanog/ml (ATV 400 mg/24h) ^Ω		En VIH-1+: 94,8 \pm 22,8 microM en mujeres (TPV/r 500/200 mg/12h) $^{\omega}$ 77,6 \pm 16,6 microM en hombres (TPV/r 500/200 mg/12h) $^{\omega}$
C _{min}	8,1 ± 5,7 microg/ml (400/100 mg/12h) $^{a, \omega}$ 7,1 ± 2,9 µg/mL(400/100 mg/12)(VIH-1+) $^{a, \Omega}$ 3,2± 2,1 microg/ml (800/200 mg/24h) (VIH-1+) $^{a, \Omega}$	En VIH-1+: 654 nanog/ml (ATV/r 300/100 mg/24h) ^ω 273±298 ^a nanog/ml (ATV 400 mg/24h) ^Ω	En VIH-1+: 2282 \pm 1168 $^{\rm a}$ nanog/ml (DRV/r 800/100 mg/24h) $^{\rm \Omega}$ 3578 \pm 1151 $^{\rm a}$ nanog/ml (DRV/r 600/100 mg/12h) $^{\rm \Omega}$	En VIH-1+: 41,6 \pm 24,3 microM en mujeres (TPV/r 500/200 mg/12h) $^{\omega}$ 35,6 \pm 16,7 microM en hombres (TPV/r 500/200 mg/12h) $^{\omega}$
AUC	AUC _{0-12h} : 113,2 \pm 60,5 mi- crog • h/ml (400/100 mg/12h) a, w AUC _{0-12h} : 92,6 \pm 36,7 µg • h/mL (400/100 mg/12)(VIH-1+) a, Ω AUC _{0-24h} : 154,1 \pm 61,4 mi- crog • h/ml (800/200 mg/24h) (VIH-1+) a, Ω	En VIH-1+: AUC _{0-24h} : 44185 nanog•h/ml (ATV/r 300/100 mg/24h) ^ω AUC _{0-24h} : 22262±20159 ^a nanog•h/ml (ATV 400 mg/24h) ^Ω	En VIH-1+: $93026\pm27050^{\text{ a}}$ nanog.h/ml (DRV/r $800/100$ mg/24h) $^{\Omega}$ $124698\pm32286^{\text{ a}}$ nanog.h/ml (DRV/r $600/100$ mg/12h) $^{\Omega}$	En VIH-1+: AUC _{0-12h} : 851 ± 309 microM.h en mujeres y 710 \pm 207 microM.h en hombres (TPV/r 500/200 mg/12h) $^{\omega}$
CI _{50/90} frente a VIH-1 (in vitro)	CI ₅₀ frente a VIH-1IIIB en células MT4 fue 17 nanoM (10,6 microg/mL) en ausencia de suero humano y 102 nanoM (63,75 microg/mL) en presencia de suero. ^ω CI ₅₀ frente a varios aislados clínicos de VIH-1 en ausencia de suero 6,5 nanoM (4,6 microg/mL). ^ω	Cl_{50} :0,002-0.004 microg/mL (2,6 – 5,3 nanoM) $^{\Omega}$	CI₅₀ : 1,2 - 8,5 nanoM (0,7 - 5,0 nanog/ml) ^ω	${f Cl_{50}}$: 0,03 a 0,07 microM (18-42 nanog/ml) $^{\omega}$ ${f Cl_{90}}$: 0,07 a 0,18 microM (42-108 nanog/ml) (La actividad antiviral de tipranavir disminuye 3,75 veces de media en presencia de suero humano). $^{\omega}$

Nombre	Lopinavir	Atazanavir	Darunavir	Tipranavir
genérico				
Actividad frente a	VIH-1,2 ^ω	VIH-1,2 ^ω	VIH-1,2 ^ω	VIH-1,2 ^ω
VIH-1				
Penetración en LCR	Grado 3 de penetración en LCR	LCR/plasma: 0,0021 a 0,0226 ^{c, Ω}	Grado 3 de penetración en LCR según	No hay estudios ^ω
(LCR:plasma)	según la clasificación del estudio	ATV ± RTV: grado 2 de penetración en	la clasificación del estudio CHARTER	Grado 1 de penetración en LCR según la
	CHARTER (de 1 a 4, menor a	LCR según la clasificación del estudio	(de 1 a 4, menor a mayor) (Letendre S	clasificación del estudio CHARTER (de 1 a 4,
	mayor) (Letendre S Poster 430.	CHARTER (de 1 a 4, menor a mayor)	Poster 430. Croi 2010)	menor a mayor) (Letendre S Poster 430. Croi
	Croi 2010)	(Letendre S Poster 430. Croi 2010)		2010)
		ATV/r: LCR: 10,3 (<5-21 ng/mL) ^b en		
		comparación con 1278 (525-2265 ng/mL) ^b		
		ATV: LCR 7,9 (6,6-22 ng/mL) b con ATV,		
		en comparación con 523 (283-1344		
		ng/mL). Concentraciones en LCR bajas		
		(<1%) y muy variables. (<i>Best BM. AIDS</i>		
		2009;23(1):83-87).		
Metabolización	CYP3A4	CYP3A4	CYP3A4	CYP3A4
	Intolerancia G-I	Hiperbilirrubinemia	Intolerancia G-I (vómitos, diarrea)	Intolerancia GI (diarrea)
Efectos	(vómitos, diarrea)	Intolerancia GI (diarrea)	Cefalea	Alteraciones SNC (vértigo, dificultad de con-
Adversos	Cefalea	Cefalea	Astenia	centración, enlentecimiento, cambios de
	Astenia	Nefrolitiasis Nefrolitiasis	Dislipemia leve	humor).
	Hiperglicemia	Los estudios disponibles a las 48 sema-	Erupción cutánea, que suele ser mode-	En combinación con RTV, aumento de trigli-
	Dislipemia	nas no muestran alteraciones lipídicas	rada y autolimitada (usar con precau-	céridos y transaminasas.
	Lipodistrofia	relevantes	ción en pacientes con alergia conocida	Se han descrito 14 casos de hemorragia
	Posible aumento del sangrado	ATV/r: Dislipemia leve	a las sulfamidas)	intracraneal, 8 de los cuales fueron mortales,
	en hemofílicos	Posible aumento del sangrado en hemo-	Posible aumento del sangrado en	entre 6840 pacientes incluidos en ensayos
		fílicos	hemofílicos	clínicos. La mayoría tenían factores de riesgo.

Nombre genérico	Lopinavir	Atazanavir	Darunavir	Tipranavir
	Alfuzosina		Alfuzosina	
Asociaciones contra-	Amiodarona	En general, los inductores del CYP3A4	Amiodarona	Abacavir (evitar a menos que no se disponga
indicadas [#]	Anticonceptivos orales	(ATV +/- RTV)	Anticonceptivos orales	de otros análogos)
	Astemizol	Alfuzosina	Astemizol	Alfuzosina
	Cisaprida	Astemizol	Budesonida inh.	Amiodarona
	Colchicina (si insuf. renal o hepá-	Bosentan con ATV no potenciado	Cisaprida	Anticonceptivos orales
	tica)	Cisaprida	Colchicina (si insuf. renal o hepática)	Astemizol
	Deriv. ergotamina	Colchicina (si insuf. renal o hepática)	Deriv. Ergotamina	Atazanavir/ritonavir
	Encainida	Deriv. Ergotamina	Extasis	Bosentan
	Éxtasis	Efavirenz (considerar ATV/r 400/200 mg	Fenobarbital	Cisaprida
	Flecainida	c/24h em nive; evitar en pretratados)	fenitoina	Colchicina
	Fluticasona inh.	Fluticasona inh (ATV/r)	Fluticasona inh.	Deriv. ergotamina
	Fosamprenavir	Halofantrina	Halofantrina	Encainida
	Halofantrina	Hypericum (Hierba de San Juan)	Hypericum (Hierba de San Juan)	Estatinas
	Hypericum (Hierba de San Juan)	Indinavir	Inhibidores proteasa VHC: boceprevir y	Etravirina
	Inhibidores proteasa VHC: boce-	Inhibidores proteasa VHC: boceprevir (la	telaprevir	Éxtasis
	previr y telaprevir	coadministración podría considerarse en	Lidocaína sistémica	Flecainida
	Lovastatina	casos puntuales en pacientes con CV del	Lopinavir/ritonavir	Fluticasona inh
	Lumefantrina	VIH indetectable y ausencia de sospecha	Lovastatina	Fosamprenavir/ritonavir
	Metanfetamina	de resistencias, empleando ATV poten-	Metanfetamina	Halofantrina
	Midazolam oral	ciado).	Midazolam oral	Hypericum (Hierba de San Juan)
	Pimozida	Irinotecan	Pimozida	Inhibidores proteasa VHC: boceprevir y tela-
	Propafenona	Lovastatina	Quinidina	previr (por ausencia de datos)
	Quinidina	Lumefantrina	Rifampicina	Lopinavir/ritonavir
	Rifampicina	Midazolam oral	Salmeterol	Lovastatina
	Salmeterol	Nevirapina	Saquinavir	Lumefantrina
	Sildenafilo (hipertensión pulmo-	Omeprazol y afines	Sertindol	Metanfetamina
	nar)	Pimozida	Sildenafilo (hipertensión pulmonar)	Metoprolol
	Simvastatina	Quinidina	Simvastatina	Midazolam oral
	Terfenadina	Rifampicina	Tadalafilo (hipertensión pulmonar)	Omeprazol y afines (reducción de eficacia de
	Tipranavir/ritonavir	Salmeterol	Terfenadina	omeprazol; si imprescindible, aumentar
	Triazolam	Sildenafilo (hipertensión pulmonar)	Triazolam	dosis).
	Vardenafilo	Simvastatina	Voriconazol	Pimozida
	Voriconazol	Terfenadina		Propafenona

Triazolam	Quinidina
Voriconazol (ATV/r)	Rifampicina
	Salmeterol
Evitar fármacos que puedan prolongar	Saquinavir/ritonavir
el intervalo QT.	Sertindol
	Sildenafilo (hipertensión pulmonar)
	Simvastatina
	Terfenadina
	Tolterodina
	Triazolam
	Voriconazol
	Zidovudina (evitar a menos que no se dispon-
	ga de otros análogos)

AUC: área bajo la curva; LCR: líquido cefalorraquídeo.

^{*}No se han incluido en todas las posibles interacciones con los FAR, dado que existen diversas páginas web dedicadas a esta finalidad que pueden facilitar la búsqueda: www.interaccionesvih.com (en castellano) y www.hiv-druginteractions.org (en inglés). Debido a que la información científica relacionada con los fármacos antirretrovirales se renueva constantemente, se recomienda consultar también la ficha técnica de los fármacos y la información actualizada ofrecida por las distintas compañías farmacéuticas y las autoridades sanitarias.

 $^{^{\}rm a}$ Expresado como media \pm DE si no se indica lo contrario

 $^{^{\}mathrm{b}}$ Expresado como mediana \pm rango intercuartil

^c Expresado como rango

^{*} En pacientes naive y en pacientes adultos con TAR previo sin mutaciones asociadas a resistencia frente a DRV y que tienen una CVP <100.000 copias/mL y un recuento de linfocitos CD4+ ≥100 células/µL (ficha técnica de darunavir 400 mg).

^ω Información procedente de la ficha técnica europea. EPARS: European Public Assessment Reports. Disponible en: http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&murl=menus/medicines/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&murl=menus/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&murl=menus/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&murl=menus/medicines.jsp&mid="con acceso">http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landing_page.jsp&murl=menus/medicines.jsp&mid="con acceso">http://www.ema.eu/ema/index.jsp&mid="con acceso">http://www.ema/index.jsp&mid="con acceso">http://www.ema/index.jsp&mid="con acceso">http://www.ema/index.jsp&mid="con acceso">http://www.ema/

^ΩInformación procedente de la ficha técnica americana (fuentes: FDA and First Data Bank, Inc). Disponible en: http://www.rxlist.com/drugs/alpha a.htm .Con acceso [14.11.2012].

[&]Guardiola JM, Soriano V (Eds). Tratamiento de la infección por VIH-SIDA. Fármacos y combinaciones. Décima Edición. Barcelona: Publicaciones Permanyer 2007

Tabla 8. Antagonistas del correceptor CCR5 e inhibidores integrasa

Grupo terapéutico Antagonistas correceptor CCR5		Inhibidores de la integrasa	
Nombre genérico	Maraviroc ¹	Raltegravir	Elvitegravir
Nombre comercial	Celsentri®	Isentress®	Stribild® (no comercializado en España a enero 2013) Contiene la combinación QUAD (EVG/COB/TDF/FTC)
Dosis	150, 300 ó 600 mg BID dependiendo de las interacciones con otros fármacos. 300 mg BID en ausencia de inhibidores o inductores de	400 mg BID	1 comp /día (EVG 150 mg/COB150 mg/TDF 300 mg/FTC 200 mg/
Recomendación	CYP3A4. Puede tomarse con o sin alimentos.	Puede tomarse con o sin alimentos.	200 1167
Presentación comercial	Comp. de 150 y de 300 mg	Comp. de 400 mg	Comprimidos
Biodisponibilidad Oral	23-33% $^{\omega}$ 23% (dosis única de 100 mg) $^{\omega}$ 33% (estimada para 300 mg) $^{\omega}$	No se ha determinado su biodis- ponibilidad absoluta en humanos w	No se ha determinado su biodisponibilidad absoluta en humanos $^{\Omega}$
Efecto de los alimentos	Un desayuno rico en grasa redujo el AUC un 33%. Sin embargo, dado que no hubo restricciones alimentarias en los estudios de eficacia, puede administrarse con o sin alimentos. Ω	Una comida con contenido de grasa moderado aumentó el 13% el AUC. Una comida con elevado contenido graso duplicó el AUC. En general, los alimentos aumentaron la variabilidad farmacocinética. Sin embargo, dado que no hubo restricciones alimentarias en los estudios de eficacia, puede administrarse con o sin alimentos.	Quad debe ser administrado con alimentos. Tras la administración de una dosis única de Quad, una comida ligera (~373 kcal, 20% grasa) aumentó el AUC de EVG un 34% y de TDF un 24%. Una comida grasa (~800 kcal, 50% fat) aumentó el AUC de EVG un 87% y de TDF un 23%. Los cambios en el AUC de cobicistat y FTC no fueron clínicamente significativos.
Semivida plasmática	13,2 horas ^ω	9 horas ^ω	12,9 horas ^{Ω}
Cmax	0,618 microg/mL (VIH- 1+asintomáticos con 300 mg/12h) $^{\Omega}$	4,5 microM (IC90%:2,0-10,2) (=2,17 microg/mL)	$1,7 \pm 0,4 \text{ microg/mL}^{\Omega}$
Cmin	0,034 microg/mL(VIH- 1+asintomáticos con 300 mg/12h) $^{\Omega}$	0,14 microM $^{\Omega}$ (= 0,068 microg/mL)	$0,45 \pm 0,26 \text{ microg/mL}^{\Omega}$
AUC	AUC $_{0-12h}$: 2,550 microg.h/mL(VIH-1+asintomáticos con 300 mg/12h) $^{\Omega}$	AUC _{0-12h} : 14,3 microM.h ^Ω (IC90%:7,6 a 26,6) (=6,89 mi-	$23,0 \pm 7,5$ microg.h/mL $^{\Omega}$

		crog.h/mL)	
Cl _{50/90} frente a VIH-1 <i>in vitro</i>	$\mathbf{Cl_{50}}$:0,1 a 4,5 nanoM (0,05 to 2,3 nanog/mL) $^{\Omega}$ (1 nanoM=0,5 nanog/mL) $^{\Omega}$ $\mathbf{Cl_{90}}$: 0,57 (0,06 – 10,7) nanog/mL $^{\omega}$	Cl₉₅ : 31± 20 nanoM ^ω (=14,9 nanog/mL)	Cl ₅₀ : 0,02 – 1,7 nanoM. ^Ω (0,0089-0,7616 nanog/mL)
Actividad	VIH-1 tropismo R5	VIH-1 y VIH-2, tropismo R5, X4 y dual	VIH-1 y VIH-2 Ω
Penetración en LCR (LCR:plasma)	Grado 3 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a mayor) (Letendre S Poster 430. Croi 2010)	Penetración insignificante ^ω Las concentraciones de raltegravir en LCR (LCR 14,5 ng/mL; conc. plasmáticas 261 ng/mL) fueron 4,5 veces superiores a la Cl ₅₀ para la cepa salvaje del virus, tomando como Cl ₅₀ 3,2 ng/mL (<i>Croteau D. AAC 2010;54:5156-5160</i>) Grado 3 de penetración en LCR según la clasificación del estudio CHARTER (de 1 a 4, menor a	No ha sido evaluado en humanos.
		mayor) (Letendre S Poster 430. Croi 2010)	
Grupo terapéutico	Antagonistas correceptor CCR5	Croi 2010)	es de la integrasa
Grupo terapéutico Nombre genérico	_	Croi 2010)	es de la integrasa Elvitegravir
	CCR5	Croi 2010) Inhibidor	T

			glomerular renal estimado de creatinina (aunque no altera el filtrado glomerular real), debido a la inhibición de la secreción tubular de creatinina. ⁰
Interacciones	// maria was marfa satura / His sha sha	No se han descrito.	Antirretrovirales: IP e ITINN ⁰
Asociaciones contraindicadas [#]	Hypericum perforatum (Hierba de San Juan) Combinación de dos inductores enzimáticos importantes (p.ej: rifampicina+efavirenz)	No se nan descrito.	Ritonavir (cobicistat tiene la misma acción: potenciador farmacocinético) ^Ω Alfuzosina Anticonceptivos orales (valorar métodos alternativos): aumento de niveles del progestágeno (norgestimato) y reducción del estrógeno (etinilestradiol) Cisaprida Colchicina (si insuf. renal o hepática) Derivados de la ergotamina Fluticasona Hypericum (Hierba de San Juan) Lovastatina Midazolam por vía oral Pimozida Rifampicina Salmeterol Sildenafilo (en hipertensión pulmonar) Simvastatina Triazolam En general, evitar fármacos que puedan reducir su eficacia como los inductores (carbamacepina, oxcarbazepina, fenobarbital, fenitoína y rifabutina, entre otros) o los antiácidos (espaciándo 2h el antiácido se evita esta interacción).

AUC: área bajo la curva; BID: dos veces al día; COB: cobicistat; LCR: líquido cefalorraquídeo. [#]No se han incluido en todas las posibles interacciones con los FAR, dado que existen diversas páginas web dedicadas a esta finalidad que pueden facilitar la búsqueda: www.interaccionesvih.com (en castellano) y www.hiv-druginteractions.org (en inglés). Debido a que la información científica relacionada con los fármacos antirretrovirales se renueva constantemente, se recomienda consultar también la ficha técnica de los fármacos y la información actualizada ofrecida por las distintas compañías farmacéuticas y las autoridades sanitarias.

^ω Información procedente de la ficha técnica europea. EPARS: European Public Assessment Reports. Disponible en:

http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines landing page.jsp&murl=menus/medicines/medicines/medicines.jsp&mid [Con acceso 14.11.2012]

¹Información procedente de la ficha técnica americana (fuentes: FDA and First Data Bank, Inc). Disponible en: http://www.rxlist.com/drugs/alpha-a.htm .[Con acceso 14.11.2012]

Tabla 9. Inhibidores de la fusión

Nombre genérico	Enfuvirtida (T-20)
Nombre comercial	Fuzeon®
Dosis recomendada	90 mg c/12h s.c.
Presentaciones Comerciales	vial de 90 mg
Semivida plasmática	3,8±0,6 horas
Biodisponibilidad	80% (vía s.c.)
Semivida plasmática	3,8±0,6 horas
C _{max}	4,59±1,5 microg/mL (VIH-1+)
C _{min}	2,6 – 3,4 microg/mL(VIH-1+)
AUC	55,8±12,1 microg.h/mL(VIH-1+)
CI 50	CI ₅₀ : 0,259 microg/mL (media geométrica) en un ensayo de entrada de recombinación de genotipos VIH-1.
Actividad	VIH-1
Metabolización Excreción	Catabolismo en sus aminoácidos constituyentes No hay datos
Efectos adversos	Reacciones locales leve-moderadas en el punto de inyección, dolor de cabeza y fiebre.
Interacciones	Escaso riesgo de interacción metabólica. Estudios <i>in vitro</i> e <i>in vivo</i> con una amplia variedad de isoenzimas hepáticos no han mostrado efecto inhibitorio de T-20 sobre los mismos.

NOTA: debido a que la información científica relacionada con los fármacos antirretrovirales se renueva constantemente, se recomienda consultar la ficha técnica de los fármacos y la información actualizada ofrecida por las distintas compañías farmacéuticas y las autoridades sanitarias.

Tabla 10. Causas de adherencia incorrecta y posibles estrategias de intervención

	Causas potenciales de	Posibles intervenciones
	incumplimiento	
Factores sociales, económicos, educativos.	Falta de apoyo social y/o familiar. Escasos recursos. Bajo nivel educati- vo	Buscar alianza con familia y allegados. Conocer necesidades sociales. Reclutar organizaciones comunitarias. Educación intensiva, explicaciones claras y comprensibles y adaptadas
Factores del equipo asisten- cial	Falta de recursos. Atención masificada e impersonal. Ausencia de coordinación entre diferentes servicios de apoyo a la asistencia. Insuficiente formación en terapia antirretroviral. Falta de accesibilidad. Deficiente formación en relación personal sanitario-paciente.	Accesibilidad y continuidad de la asistencia. Equi- po multidisciplinar. Recursos materiales y huma- nos suficientes y coordinados. Formación sólida en terapia antirretroviral y en atención al paciente. Plantear terapia directamente observada en de- terminados ámbitos asistenciales.
Factores rela- cionados con el tratamiento	Efectos adversos, tamaño y palatabili- dad de las unidades galénicas, núme- ro de dosis diarias. Intrusión en la vida del paciente. Falta de adaptación a las preferencias y necesidades del pa- ciente.	Simplificar el régimen terapéutico. Pautas convenientes en número y dosificación de comprimidos, emplear fármacos co-formulados Individualizar tratamiento: Resistencias, comorbilidad, preferencias, interacciones.
	ciente.	Técnicas especiales para la toma de la medicación. Ayudar a desarrollar mecanismos de reacción (p.e. anticipación y manejo de efectos adversos)
Factores relacionados con el paciente	No aceptación. Rechazo del diagnóstico. Rechazo del tratamiento (creencias y actitudes) Olvidos y barreras. Insuficiente comprensión de la enfermedad y su tratamiento. Insuficiente entendimiento de la relación riesgo/beneficio. Motivos de dosificación y cumplimiento. Comorbilidad psiquiátrica. Uso y abuso de drogas.	Negociar y consensuar el plan terapéutico. Fomentar la percepción de indicadores de la necesidad de tratamiento. Informar sobre riesgos y beneficios del tratamiento. Asociar cada toma con actividades cotidianas. Técnicas especiales y ayudas para el cumplimiento (diarios de medicación, alarmas, teléfonos, etc). Mejorar la comunicación paciente – profesional sanitario. Información referente a la enfermedad y el tratamiento, motivo de la dosificación, riesgo del incumplimiento. Información oral y escrita. Verificar comprensión. Derivar para intervención psicológica en áreas disfuncionales o intervención psiquiátrica si se detecta patología psiquiátrica.

Tabla 11. Toxicidad de cada familia de fármacos antirretrovirales

Familia	Toxicidad	Prevalencia	Clínica
Inhibidores de la transcriptasa inversa nucleósidos o nucleó- tidos ¹	Toxicidad mitocondrial	20-40%	Neuropatía periférica Miopatía Cardiomiopatía Pancreatitis Hepatomegalia Esteatosis hepática Hepatitis Acidosis láctica Mielotoxicidad Alteración tubular proximal renal Lipoatrofia Hiperlipemia y resistencia insulínica
Inhibidores de la transcriptasa inversa no nucleósidos ²	Hipersensibilidad	10-20%	Exantema (extensión y gravedad va- riable) Afectación multiorgánica Fiebre
Inhibidores de la proteasa ³	Hiperlipemia Resistencia a la insulina (IP clásicos; difícil de separar de los efectos de análogos de timidina) y lipodistrofia	25-50%	Hipertrigliceridemia (especialmente) Hipercolesterolemia Diabetes mellitus Lipoacumulación intraabdominal
Inhibidores de la fusión ⁴	Inflamación dérmica local	60-70%	Dolor Tumoración
Inhibidores de los receptores CCR5 ⁵	Mecanismo desconocido (bloqueo receptor CCR5?)	<2%	↑ riesgo de infecciones respiratorias ↑ riesgo de cardiopatía isquémica? ⁵

Inhibidores de la integrasa⁶

Mecanismo desconocido

5-10%⁶

Elevación de CPK⁶

Las distintas manifestaciones de la toxicidad se suelen presentar de forma aislada. Aparecen generalmente en los tres primeros meses de tratamiento, aunque algunas expresiones de la toxicidad mitocondrial (neuropatía, miopatía, acidosis láctica o lipoatrofia) suelen aparecer de forma tardía (meses o años).

- 1. ABC constituye una excepción, pues su toxicidad está mediada por hipersensibilidad. TDF puede inducir nefrotoxicidad.
- 2. Efavirenz puede inducir toxicidad neuropsíquiátrica como efecto adverso singular.
- 3. Indinavir puede causar nefrolitiasis e insuficiencia renal como efectos adversos singulares. Atazanavir no comporta el riesgo de alteraciones metabólicas, como otros IP, pero puede producir hiperbilirrubinemia y nefrolitiasis como efectos adversos singulares.
- 4. La enfuvirtida (T-20), único representante de esta familia disponible en la actualidad, se administra por vía subcutánea.
- 5. Maraviroc es el único representante de esta familia disponible en la actualidad. Los efectos indicados están incluidos en la ficha técnica.
- 6. Raltegravir es el único representante de esta familia disponible en la actualidad. En estudio BENCHMRK, elevación de CPK grado 3-4 (generalmente asintomática), 7%. CPK: Creatinfosfoquinasa

Tabla 12. Toxicidad de los antirretrovirales por órganos y aparatos

Toxicidad	Fármaco/s	Diagnóstico	Patogenia	Actitud
Anemia	AZT (dosis-dependiente)	Síntomas clínicos de anemia	Inhibición de la proliferación de las células progenitoras eritroides	Suspensión de AZT
				Transfusión de hematíes (si hemoglobina <8g/dL ó hay síntomas de anemia)
Miopatía	AZT (dosis-dependiente)	Después del primer semestre de	Toxicidad mitocondrial (AZT)	Suspensión de AZT ó RAL
	RAL	tratamiento (AZT)	Mecanismo desconocido (RAL)	Si clínica importante, prednisona 1-2 mg/kg/día (AZT)
		Síntomas: mialgias o debilidad muscular proximal y elevación de enzimas musculares (CPK, LDH, aldolasa)		
Neuropatía periférica	ddI (13-34%)	Hipoestesia, parestesia o dolor	Interacción entre citoquinas y	Evitar asociaciones de fármacos neurotóxicos
d4T (15-20%) (dosis-dependiente)	en zona distal de extremidades (especialmente pies)	factores de crecimiento neuronal Favorecida por neuropatía previa	Valorar mantener fármacos potencialmente implicados si la clínica no es grave y no hay alternativas razonables	
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Diagnóstico diferencial con la neuropatía por el propio VIH-1 (aparece en pacientes sin trata- miento e inmunodepresión grave)	y factores predisponentes (enolismo, desnutrición, diabe- tes, etc)	Suspender los fármacos implicados si clínica progresiva o invalidante. La recuperación es lenta (meses o años).
				Si dolor leve: analgésicos habituales.
				Si dolor moderado-intenso: gabapentina, pregabalina o lamotrigina con o sin benzodiacepinas; si no eficacia, valorar carbamacepina y/o amitriptilina (producen efectos colinérgicos)
				Si dolor muy intenso o refractario: opiáceos
oxicidad neuropsí- EFV (20-50%)		Durante el primer mes de trata-	Desconocida.	Evitar en pacientes con trastornos psiquiátricos mayores.
quica	(dosis-dependiente; más prevalente si administración	miento, tras lo cual disminuye o desaparece.		Valorar individualmente el estilo de vida y la actividad del paciente antes de prescribirlo.
	con alimentos)	Espectro clínico variado: mareo,		Generalmente no es necesaria la suspensión de efavirenz.
		ansiedad, somnolencia, trastor- nos del sueño, agravamiento de		Suspender en casos de manifestaciones graves o invalidantes.
		problemas psíquicos subyacen-		Administración por la noche, al menos 1-2 horas después de la cena.
		tes, y alteraciones motoras.		Valorar benzodiacepinas o neurolépticos si alteraciones del sueño persis tentes.
				Puede intentarse ajuste de dosis si hay posibilidad de estudio farmacoci- nético, aunque no está definitivamente probado

Toxicidad	Fármaco/s	Diagnóstico	Patogenia	Actitud
Exantema y/o hiper- sensibilidad	No-nucleósidos (más fre- cuente NVP) (<20%) Inhibidores de proteasa	Durante los primeros dos meses de tratamiento Exantema maculo-papular (casos	Desconocida. Se ha sugerido una reacción antígeno-anticuerpo similar a la	Comienzo escalonado de dosis de nevirapina. No dar corticoides profi- lácticos (no evitan el riesgo e incluso lo pueden aumentar) ni antihista- mínicos
	(más frecuente TPV (8- 14%), DRV y FPV (3-5%)	leves). Fiebre, afectación mucosa, pulmonar, hepática o hematoló- gica (casos graves)	enfermedad del suero o una toxicidad directa por metabolitos intermediarios. Identificación de pacientes con	Si exantema leve sin clínica de hipersensibilidad acompañante, se puede mantener el tratamiento y realizar una vigilancia estrecha.
	Nucleósidos (más frecuente ABC: 5% si no se realiza			Identificación de pacientes con riesgo genético elevado de hipersensibilidad a abacavir (HLA-hipersensibilidad a abacavir (HLA-hipersensibilidad a abacavir (HLA-hipersensibilidad a bacavir (HLA-hipersensibilidad bacavir
	determinación de HLA B*5701; si se realiza, la frecuencia es 0%)	La hipersensibilidad se manifiesta por afectación multiórganica, a		
	rrecuencia es 0%)	veces con escaso o nulo exante- ma, y puede haber eosinofilia.		En los casos donde pueda estar implicado ABC y la clínica no sea clara, puede ser razonable mantener el tratamiento durante 24 horas más con una vigilancia estrecha y valorar evolución antes de retirar ABC.
				Tratamiento sintomático con antihistamínicos y/o corticoides una vez interrumpido el fármaco sospechoso
			Tratamiento de soporte hemodinámico, o respiratorio en casos graves que lo requieran	
				NO REINTRODUCIR NUNCA UN FÁRMACO RETIRADO POR SOSPECHA DE HIPERSENSIBILIDAD
Hepatitis	Nucleósidos (más frecuente AZT, ddl y d4T). No nucleó-	El 50% de los casos aparece en el primer semestre.	Multifactorial: toxicidad mito- condrial (nucleósidos), efecto	Considerar vigilancia estrecha y potencial suspensión si transaminasas >5 veces límite superior de normalidad.
,	sidos (más frecuente NVP) Inhibidores de proteasa	Aumento de transaminasas sin	tóxico-inmunológico (no nucleó- sidos); si IP efecto mixto (toxici-	Interrumpir si transaminasas >10 veces límite superior de normalidad, manifestaciones clínicas de hipersensibilidad (fiebre o exantema), de
	(más frecuente RTV a dosis plena)	Hepatitis clínica (<1%).	dad directa, recuperación inmu- ne si VHB o VHC), rebrote de	fallo hepático (ictericia, encefalopatía, o hemorragia) o acidosis láctica.
piena)	piciia <i>j</i>	Factores de riesgo: infección por virus de hepatitis B y C	virus B tras suspender TAR con efecto anti-VHB	

Toxicidad	Fármaco/s	Diagnóstico	Patogenia	Actitud
Toxicidad gastrointestinal	Inhibidores de proteasa sobre todo RTV (a dosis plenas), 40%; IDV, 25%; NFV, 25%; LPV/r, 25%; SQV, 5% Nucleósidos con menor frecuencia que IP (particu- larmente AZT y TDF)	Sabor desagradable (RTV suspensión) Molestias digestivas altas (IDV y APV) Diarrea (NFV y LPV/r)	Multifactorial. Inhibición de enzimas pancreáticas (inhibidores de proteasa). Intolerancia a la lactosa que contienen como excipiente (todos los antirretrovirales).	Raramente grave, pero por su frecuencia e incomodidad puede limitar la adherencia al TAR. Para la diarrea, dietas rica en alimentos astringentes o fibra soluble o fármacos inhibidores de la motilidad intestinal (loperamida). Suspensión del fármaco si molestias persistentes o intensas.
Pancreatitis	Nucleósidos (más frecuente ddl y d4T). Aumento de riesgo cuando se administra hidroxiurea, o TDF con ddl.	Generalmente, asintomática. Puede haber manifestaciones clínicas de dolor abdominal y diarrea.	Toxicidad mitocondrial	Retirar el fármaco potencialmente implicado.
Insuficiencia renal y tubulopatía	TDF IDV	Elevación leve o moderada de la creatinina con/sin anomalías analíticas de disfunción tubular (hipofosfatemia). No suele acompañarse de clínica.	Alteración tubular proximal (TDF) Nefritis intersticial por cristales (IDV)	Evitar en pacientes con insuficiencia renal. Evitar en lo posible coadmi- nistración con otros fármacos potencialmente nefrotóxicos. Hidratación adecuada para prevenir o mejorar la elevación de creatinina. Suspensión del fármaco si el filtrado glomerular es <50 mL/min
Nefrolitiasis	IDV ATV	Dolor cólico lumbar. Hematuria microscópica y ocasionalmente macroscópica. Ocasionalmente, fiebre (diagnóstico diferencial con pielonefritis) Más frecuente en ambientes	Precipitación de indinavir en orina concentrada (densidad >1020) y pH básico (>5).	Prevención mediante ingesta adecuada de líquido (1500 ml de agua al día o más si ambiente caluroso o pérdidas extraordinarias de líquidos). Evitar bebidas carbónicas. Anti-inflamatorios no esteroideos para el dolor. Suspensión transitoria del fármaco responsable si dolor intenso.
		calurosos		Suspensión definitiva del fármaco responsable si episodios repetidos sin desencadenante evidente. Ajuste de dosis si posibilidad de estudio farmacocinético.

Tabla 13. Evaluación y tratamiento de la dislipemia

Evaluación Realizar analítica en ayunas Descartar otras causas de hiperlipemia secundaria Tratamiento encaminado a prevenir la enfermedad aterosclerótica y a evitar las complicaciones inmediatas de la hipertrigliceridemia grave. Dobjetivo del tratamiento: - Conseguir una cifra de colesterol LDL, según el riesgo. Si enfermedad coronaria o riesgo equivalente, LDL <70 mg/dL; si RCV ≥20% (Framingham), LDL <100 mg/dL - Si triglicéridos >500mg/dL, se tratará la hipertrigliceridemia independiente-

Tratamiento:

En primer lugar, medidas generales: dieta (consulta a experto en nutrición), ejercicio físico, abstinencia de tabaco, y sobre todo valoración individualizada de la retirada de IP y/o de los análogos de la timidina.

Tratamiento farmacológico (si las medidas previas no son eficaces):

mente la concentración de colesterol-LDL

- Estatinas. Utilizar preferentemente atorvastatina, pravastatina, rosuvastatina o pitavastatina; precaución por interacciones con IPs. Valorar ezetimiba o la combinación ácido nicotínico/laropiprant solas (si no se pueden usar estatinas) o asociadas a estatinas (si no se consiguen los objetivos de tratamiento con estatinas solas)
- Fibratos si hipertrigliceridemia aislada o junto a elevación moderada de colesterol-LDL. En caso de hipertrigliceridemia intensa y refractaria puede añadirse ácidos grasos omega-3.
- Precaución con la coadministración de fibratos y estatinas (mayor riesgo de toxicidad muscular)

Tabla 14. Evaluación y tratamiento de la diabetes mellitus

Evaluación	Tratamiento
Realizar analítica en ayunas	Valorar individualizadamente la sustitución de análogos de la
Diagnóstico:	timidina y otros fármacos no antirretrovirales que pudieran estar
- Determinación de la hemoglobina glicosilada	implicados
- Tolerancia oral a la glucosa (si glucosa basal alterada)	Objetivo terapéutico guiado por hemoglobina glicosilada (HbA1c) <6.5%
Tratamiento encaminado a evitar las complicacio-	Consulta con endocrinólogo
nes metabólicas a corto plazo (hipoglucemia, cetosis, cetoacidosis, y estado hiperosmolar) y las com-	Antidiabéticos orales. Metformina, si sobrepeso u obesidad abdominal, o sulfonilureas. Pioglitazona si lipoatrofia
plicaciones micro y macro-vasculares a largo plazo	Insulina en los pacientes con diabetes de inicio e insulinopenia (cetosis o cetoacidosis), pérdida de peso y cuando no sea posible conseguir el objetivo de HbA1c < 7% con antidiabéticos orales.
	Debería considerarse la administración de 75-150 mg/día de AAS a todos los pacientes con diabetes.

Tabla 15. Evaluación y tratamiento de la alteración de la distribución de la grasa corporal*

Evaluación Tratamiento

Diagnóstico clínico

Sería deseable la realización periódica de alguna medida objetiva de la composición corporal (según disponibilidad y posibilidades económicas de cada centro) No hay ninguna medida que haya demostrado resolver satisfactoriamente los cambios corporales. Las que a continuación se describen han mostrado, en el mejor de los casos, una eficacia parcial y algunas de ellas no están exentas de riesgos:

- medidas generales (dieta, ejercicio físico): evitar modificaciones de peso >5% del peso ideal; el ejercicio físico aeróbico mejora las alteraciones metabólicas y la lipoacumulación intraabdominal
- sustitución de FAR (IP, ITIAN): la retirada de los IP clásicos puede mejorar las alteraciones metabólicas y la lipoacumulación intraabdominal; la retirada de análogos de timidina mejora la lipoatrofia (existen más estudios con d4T que con AZT)
- fármacos con efectos metabólicos (metformina, glitazonas, hormona del crecimiento). La hormona del crecimiento puede disminuir la lipoacumulación intraabdominal pero provoca hiperglucemia y otros efectos secundarios. Se han comunicado buenos resultados en la lipoacumulación visceral con tesamorelina (análogo del factor estimulante de la hormona de crecimiento). Los efectos de todos estos fármacos revierten con el cese del mismo y ninguno de ellos tiene indicación para el tratamiento de la lipodistrofia.
- cirugía plástica (relleno facial en lipoatrofia, cirugía reductora en lipoacúmulos accesibles): es el único tratamiento actual con resultados inmediatos.

^{*} La alteración de la distribución de la grasa corporal es una complicación prevalente y limitante de la calidad de vida de los pacientes que reciben TARV

Tabla 16. Ajuste de dosis de los antirretrovirales en la insuficiencia renal y hepática

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Inhibidores TI, análog	gos nucleósido		
Abacavir (ABC)	No requiere ajuste de dosis No administrar Combivir [®] y Trizivir [®] en pacientes con Cl <50 mL/min (por se- parado, ajustar dosis adecuadamente)	Dosis habitual. HD: administrar independientemente de la sesión de HD, ya que se elimina mínimamente.	IH leve (Child-Pugh 5 a 6): 200 mg c/12h. Utilizar la solución oral de Ziagen® (10 mL c/12h). IH moderada-grave: la seguridad, eficacia y propiedades farmacocinéticas no han sido evaluadas. Evitar en lo posible su uso.
Didanosina, cápsulas	≥ 60 Kg		
entéricas (ddl)	Cl ≥60: 400 mg c/24h Cl 30-59: 200 mg c/24h Cl 10-29: 125 mg c/24h Cl <10: 125 mg c/24h	HD/CAPD: 125 mg c/24h; los días de HD administrar post-HD/CAPD (no requiere suplemento).	Riesgo elevado de toxicidad hepática y descompensación. En pacientes cirróticos, no se recomienda el uso de dida- nosina.
	<60 kg Cl ≥60: 250 mg c/24h Cl 30-59: 125 mg c/24h Cl 10-29: 125 mg c/24h Cl <10: Emplear Videx® polvo para solución pediátrica 75 mg/24h.	HD/CAPD: Emplear Videx® polvo para solución pediátrica 75 mg/24h.	En pacientes en tratamiento del VHC didanosina no debe administrarse conjuntamente con ribavirina.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Emtricitabina (FTC)	En cápsulas		
	Cl ≥50: 200 mg c/24h	HD: en comprimidos 200 mg c/96h, en	Dosis habitual (no hay datos, pero en base a su mínimo metabo-
	Cl 30-49: 200 mg c/48h	solución (10 mg/ml) 60 mg (6 ml) c/24h.	lismo hepático, es poco probable que requiera ajuste de dosis).
	Cl 15-29: 200 mg c/72h	Los días de HD administrar post-HD	
	Cl <15: 200 mg c/96h	No se ha estudiado en diálisis perito- neal.	
	En solución (10 mg/ml)*:	Truvada®: no administrar a pacientes	
	Cl ≥50: 240 mg (24 ml) c/24h	en HD (administrar los componentes	
	Cl 30-49: 120 mg (12 ml)c/24h	por separado, ajustando dosis adecua-	
	Cl 15-29: 80 mg (8 ml) c/24h	damente)	
	Cl <15: 60 mg (6 ml) c/24h		
	Truvada®: no administrar a pacientes		
	con Cl < 30 mL/min		
Estavudina (d4T)			
	≥ 60 Kg	HD: 20 mg c/24h; los días de HD admi-	
	Cl ≥50: 40 mg c/12h	nistrar post-HD	
	Cl 26-49: 20 mg c/12h		
	Cl ≤25: 20 mg c/24h		_
			Dosis habitual. Utilizar con precaución por el riesgo de toxicidad
	<60 kg	HD: 15 mg c/24h; los días de HD admi-	mitocondrial y esteatosis hepática.
	Cl ≥50: 30 mg c/12h	nistrar post-HD	
	Cl 26-49: 15 mg c/12h		
	Cl ≤25: 15 mg c/24h		

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Lamivudina (3TC)	Cl ≥ 50: 150 mg c/12h ó 300 mg c/24h Cl 30-49: 150 mg c/24h (primera dosis de 150 mg) Cl 15-29: 100 mg c/24h (primera dosis 150 mg) Cl 5-14: 50 mg c/24h (primera dosis 150 mg) Cl <5: 25 mg c/24h (primera dosis 50 mg) No administrar Combivir® y Trizivir® si Cl <50 mL/min (administrar los componentes por separado, ajustando dosis adecuadamente)	HD: 25 mg c/24h (primera dosis 50 mg) Los días de la HD, administrar post-HD.	Dosis habitual
Tenofovir (TDF)	Cl ≥ 50: no requiere ajuste de dosis Cl 30-49: 300 mg c/48h Cl 10-29: 300 mg c/72 a 96h No hay recomendaciones disponibles para pacientes con Cl <10 sin HD	HD: habitualmente 300 mg una vez por sema- na, después de una de las sesiones (asumien- do 3 sesiones de diálisis semanales de 4h)	Dosis habitual
Zidovudina (AZT)	Puede acumularse el metabolito glucurónido (GAZT) Cl 10-50: 250-300 mg c/12h. Cl <10: 250-300 mg c/24h. No administrar Combivir® y Trizivir® en pacientes con Cl <50 mL/min (administrar los componentes por separado, ajustando dosis adecuadamente)	300 mg c/24h. HD/CAPD: no afecta la eliminación de AZT y aumenta la eliminación de GAZT. Por precaución, se recomienda administrar la dosis diaria post-HD/CAPD.	Se ha observado una reducción del aclaramiento oral de zidovudina el 32%, 63% y 70%, respectivamente, en pacientes con IH leve, moderada-grave ó cirrosis comprobada por biopsia, en comparación con sujetos sin alteración hepática. Algunos autores sugieren reducir la dosis a 200 mg c/12h en pacientes con IH grave. Se recomienda monitorizar estrechamente la aparición de toxicidad hematológica.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Inhibidores de la TI, r	no análogos		
Efavirenz (EFV)	No requiere ajuste de dosis.	HD: no parece necesario ajustar la dosis.	IH leve a moderada : dosis habitual. Dada la elevada variabilidad interindividual, se recomienda monitorizar niveles plasmáticos y aparición de efectos adversos, especialmente a nivel de SNC.
	Atripla®: en pacientes con Cl <50 ml/min, utilizar los principios activos por separado.	CAPD: un estudio farmacocinético pre- liminar indica que no se requiere ajuste de dosis (datos de un solo paciente).	IH grave: datos escasos. Evitar en lo posible su uso/ monitorizar niveles plasmáticos. En un paciente con Child Pugh grado C, la semivida de EFV se duplicó. En dos pacientes con IH (uno de ellos con cirrosis) el AUC de EFV aumentó 4 veces. En 3 pacientes con fibrosis >12 kPa (Fibroscan®) la Cmin fue 2,5 veces superior a la obtenida en 15 pacientes coinfectados por VHC con fibrosis <12kPa. En otro estudio el 31% de los pacientes cirróticos presentaron unas concentraciones > 4000 ng/mL, en comparación con un 3% en los coinfectados no cirróticos.
Etravirina (ETR)	NRAD	HD/CAPD: por su elevada unión a pro- teínas plasmáticas, no es de esperar que se elimine en las sesiones de HD/CAPD.	IH leve o moderada: no requiere ajuste de dosis. IH grave: no hay datos; evitar en lo posible su uso.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Nevirapina (NVP)	No requiere ajuste de dosis.	HD: los días de HD, se recomienda admi-	IH leve a moderada (Child-Pugh ≤7): dosis habitual. Sin embargo, en
		nistrar la dosis después de la HD ó un suplemento de 200 mg post-hemodiálisis.	pacientes con IH moderada, se recomienda monitorizar estrechamente niveles plasmáticos y aparición de efectos adversos. En un estudio en 4 pacientes con IH moderada (Child-Pugh B), el AUC de NVP aumentó 41%.
			IH grave: Evitar en lo posible su uso (hepatotoxicidad).
			En el estudio NEVADOSE 66% de los pacientes con un mayor grado de fibrosis (F4; Fibroscan®) presentaron una Cmin de NVP por encima del límite superior de normalidad (>6000 ng/mL). En otro estudio el 50% de los pacientes cirróticos presentaron unas concentraciones > 8000 ng/mL, en comparación con un 27% en los coinfectados no cirróticos.
			Se ha observado un aumento de riesgo de hepatotoxicidad en pacientes sin tratamiento previo con CD4 >250 céls/ μ L (mujeres) o >400 céls/ μ L (hombres)
Rilpivirina	IR leve-moderada: no requiere	HD/CAPD: por su elevada unión a proteí-	IH leve a moderada: no requiere ajuste de dosis. (En 8 voluntarios
	ajuste de dosis. IR grave: no hay datos. Emplear	nas plasmáticas, no es de esperar que se elimine en las sesiones de HD/CAPD.	con insuficiencia hepática leve, la Cmin, C max y AUC fueron un 31%, 27% y 47% mayores en comparación con 8 voluntarios sanos.
	con precaución.	elifilite eli las sesiones de rib/ CAPD.	En 8 voluntarios con insuficiencia hepática moderada, la Cmin, C max y AUC fueron comparables con los de 8 voluntarios sanos. Estos cambios no se consideran clínicamente relevantes. IH grave: no hay datos.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Inhibidores de la pro	oteasa		
Atazanavir (ATV)	No requiere ajuste de dosis	HD/CAPD: por su elevada unión a proteínas plasmáticas, no es de esperar que se elimine en las sesiones de HD/CAPD.	IH leve: según un estudio en pacientes coinfectados con VHC con IH leve a moderada, el ATV no potenciado (400 mg/24h) puede no llegar a alcanzar la C _{mín} deseada (6/9 pacientes con niveles subterapéuticos). Se recomienda usar ATV potenciado con RTV (300/100 mg /24h),
		HD: se recomienda su uso potenciado (ATV/r 300/100) para compensar el descenso de concentración de ATV (reducción del 28% en el AUC de ATV los días sin HD y del 42% los días de HD; la eliminación a través de la HD es de sólo el 2%). Monitorizar niveles plasmáticos cuando sea posible.	IH moderada-grave: la Agencia Europea del Medicamento desaconseja el uso de atazanavir potenciado en este contexto por falta de datos. Sin embargo, diversos estudios han demostrado un buen perfil de seguridad de atazanavir (potenciado o no) en pacientes cirróticos, incluso con insuficiencia hepática avanzada (child-Pugh B ó C) ó descompensación de su hepatopatía. En 9 pacientes con fibrosis >12 kPa (Fibroscan®) que recibieron ATV/r, la C _{min} fue comparable a la obtenida en 26 pacientes coinfectados por VHC con fibrosis<12 kPa. Un estudio en 12 pacientes coinfectados por VHC tratados con ATV/r, el AUC fue solo un 36% superior en los pacientes cirróticos (n=7) En un estudio en el que se compararon los niveles plasmáticos de ATV en pacientes VIH+/VHC-, VIH+/VHC+ sin cirrosis y VIH+/VHC+ con cirrosis, no se observaron diferencias en los 3 grupos en los que recibieron ATV/r 300/100 mg/24h; sin embargo, en los que recibieron ATV 400 mg/24h, los niveles fueron significativamente mayores en los coinfectados por el VHC con o sin cirrosis que en los no coinfectados. Monitorizar niveles plasmáticos cuando sea posible.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Darunavir (DRV)	IR leve, moderada o gra-		
	ve: no requiere ajuste de dosis	HD/CAPD: debido a la elevada unión a proteínas plasmáticas, no es de espe-	IH leve o moderada: no requiere ajuste de dosis
		rar que se elimine en las sesiones de HD/CAPD.	IH grave: no hay datos; evitar en lo posible su uso.
Fosamprenavir (FPV)	No requiere ajuste de		IH leve (Child Pugh 5-6): FPV 700 mg c/12h + RTV 100 mg c/24h
	dosis		IH moderada (Child Pugh 7-9): FPV 450 mg c/12h + RTV 100 mg c/24h
		HD/CAPD: debido a su elevada unión	En IH grave (Child Pugh 10-15): FPV 300 mg c/12h + RTV 100 mg c/24h (usar
		a proteínas plasmáticas, no es de	solución oral de FPV)
		esperar que se elimine en las sesiones	
		de HD/CAPD.	En un estudio en 2 pacientes con fibrosis >12 kPa (Fibroscan®) la Cmin fue com-
			parable a la obtenida en 6 pacientes coinfectados por VHC con fibrosis<12 kPa. En otro estudio los pacientes cirróticos (n=6) presentaron una C_{min} 2 veces ma-
			yor y AUC 43% mayor.
			Se recomienda la monitorizar niveles plasmáticos cuando sea posible.
Indinavir (IDV)	No requiere ajuste de		IDV (no potenciado):
	dosis	HD: probablemente no requiera ajus-	IH leve a moderada: 600 mg c/8h.
		te de dosis si función hepática con-	IH grave: no hay datos.
		servada (datos de un solo paciente).	Se recomienda monitorizar niveles plasmáticos cuando sea posible.
		Se elimina mínimamente a través de	
		la HD.	IDV/r:
			Algunos pacientes coinfectados con VHC pueden requerir reducción de dosis, habitualmente IDV/r 400/100 mg C/12h o, incluso IDV/r 200/100 mg c/12h. Se recomienda monitorizar niveles plasmáticos cuando sea posible.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Lopinavir (LPV/r)	No requiere ajuste de dosis	HD: El AUC de LPV/r en 13 pacientes en HD fue equivalente a la de pacientes con función renal normal. No ajuste de dosis. CAPD: no hay datos. Debido a la elevada unión a proteínas plasmáticas de lopinavir y ritonavir, no es de esperar que se elimine en las sesiones de CAPD.	Según la ficha técnica de Kaletra®, en pacientes infectados por VIH con insuficiencia hepática leve a moderada, se ha observado un aumento en la exposición a lopinavir del 30% aproximadamente, aunque no se espera que sea clínicamente relevante. No hay datos en pacientes con insuficiencia hepática grave, por lo que Kaletra no puede administrarse a estos pacientes. Un estudio abierto en 65 pacientes VIH+ demostró que la farmacocinética de lopinavir/ritonavir no cambiaba significativamente en los pacientes coinfectados por el VHC sin cirrosis. En otro estudio, los pacientes coinfectados por el VHC con cirrosis hepática sin signos de IH (n=7) presentaron un aumento del 100% en el AUC y la Cmin de ritonavir, pero sin diferencias en la exposición a lopinavir. Un estudio en pacientes con IH leve (n=6) o moderada (n=6) mostró un aumento significativo en la exposición tanto a lopinavir como a ritonavir. Sin embargo, la relevancia clínica de estos cambios no está clara por lo que no se aconseja modificar las dosis de lopinavir. Se recomienda monitorizar niveles plasmáticos cuando sea posible.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Nelfinavir (NFV)	No requiere ajuste de dosis	HD: no es probable que NFV se elimine significativamente a través de la HD. Datos de un paciente con ERCA e IH mostraron la ausencia de eliminación de NFV durante una sesión de HD de 4 horas.	Dosis habitual (aunque en presencia de IH aumenta el AUC de NFV entre un 49 % y un 69 %, los datos no parecen indicar que se produzca un aumento de toxicidad).
		CAPD: no es probable que NFV se elimine significativamente a través de la CAPD. En un paciente tratado con 1250 mg c/12h de NFV, las concentraciones en el líquido de diálisis fueron inferiores al límite de detección.	Se recomienda monitorizar niveles plasmáticos cuando sea posible.
Ritonavir (RTV)	No requiere ajuste de dosis	HD/CAPD: debido a la elevada unión a proteínas plasmáticas de ritonavir, no es de esperar que se elimine en las sesiones de HD/CAPD	No usar RTV a dosis plenas por el riesgo de hepatotoxicidad. Ritonavir como potenciador farmacocinético: IH leve a moderada: dosis habitual. IH grave: Según la ficha técnica de Norvir, no se debe administrar ritonavir como potenciador farmacocinético en aquellos pacientes que tengan descompensada la función hepática. En ausencia de estudios farmacocinéticos en pacientes con insuficiencia hepática grave estable (Child Pugh Grado C) no descompensada, se debe tener cuidado cuando el ritonavir se utilice como potenciador farmacocinético ya que se puede producir un aumento de los niveles del inhibidor de la proteasa. Consultar datos específicos sobre el inhibidor de la proteasa potenciado con el ritonavir.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Saquinavir (SQV)	No requiere ajuste de dosis.	HD/CAPD: debido a la elevada unión a proteínas plasmáticas de ritonavir, no es de esperar que se elimine en las sesiones de	IH leve-moderada: dosis habitual.
		HD/CAPD. Datos de un paciente indican escasa eliminación a través de HD.	IH grave: no hay datos. Evitar en lo posible su uso. Contraindicado en pacientes con insuficiencia hepática descompensada. Se recomienda monitorizar niveles plasmáticos cuando sea posible.
Tipranavir (TPV)	No requiere ajuste de dosis.		
		HD/CAPD: debido a la elevada unión a proteínas plasmáticas de TPV/RTV, no es de esperar que se eliminen en las sesiones de HD/CAPD.	Datos limitados. Elevado riesgo de toxicidad hepática: TPV/r se ha relacionado con casos de hepatitis clínica y descompensación hepática, incluyendo algunos casos mortales. Se recomienda un estrecho seguimiento de los pacientes coinfectados por VHB ó VHC, por el aumento de riesgo de hepatotoxicidad que presentan.
			IH leve (Child-Pugh A): dosis habitual.
			IH moderada o grave (Child-Pugh B y C): contraindicado.
Inhibidores de la fusi	ón		
Enfuvirtida (T-20)			
	No requiere ajuste de dosis.	HD: No requiere ajuste de dosis	No hay datos. Algunos autores recomiendan utilizar la dosis habitual.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Inhibidores de la Inte	grasa		
RAL (raltegravir)	No requiere ajuste de dosis	HD: no es probable que RAL se elimine significativamente a través de la HD. Datos de dos pacientes con ERCA mostraron la ausencia de eliminación de RAL durante una sesión de HD de 4 horas.	IH leve-moderada: no requiere ajuste de dosis. IH grave: no requiere ajuste de dosis. A pesar de los aumentos de niveles plasmáticos observados (aumento del 72% en al AUC y de 6 veces la Cmin), raltegravir fue bien tolerado en pacientes con cirrosis hepática avanzada (Child-Pugh C).
Elvitegravir (EVG)/cobicistat /TDF/FTC (Quad)	Cobicistat reduce levemente el filtrado glomerular renal estimado de creatinina (aunque no altera el filtrado glomerular real), debido a la inhibición de la secreción tubular de creatinina. La asociación Quad no debe iniciarse en pacientes con CI <70 ml/min. Si el CI durante el tratamiento se reduce a CI<50 ml/min debe suspenderse, dado que no se puede realizar el ajuste de dosis adecuado para FDF/FTC.	No prodece. La combinación Quad no debe emplearse si Cl <50 ml/min.	IH leve-moderada: no requiere ajuste de dosis. IH grave: no hay datos, por lo que no se recomienda su empleo.

Antirretrovirales	Insuficiencia renal	Hemodiálisis/diálisis peritoneal	Insuficiencia hepática
Inhibidores correcept	tor CCR5		
MVR (maraviroc)	En ausencia de inhibidores potentes de CYP3A4 no requiere ajuste de dosis. Sólo se recomienda un ajuste de dosis en pacientes con CI <80 ml/min y que están recibiendo inhibidores potentes del CYP3A4, como los IPs (excepto TPV/r), ketoconazol, itraconazol, claritromicina o telitromicina: en estos casos administrar 150 mg c/24h. Si el C es <30 ml/min se recomienda mucha precaución debido al aumento de ries-	HD: en ausencia de inhibidores potentes del CYP3A4 no se requiere ajuste de dosis. En presencia de los mismos, dosificar igual que para Cl <80 ml/min (datos limitados) Escasa eliminación a través de la HD.	Datos de un estudio con dosis únicas de 300 mg MVR. En comparación con los voluntarios con función hepática normal: IH leve: +25% AUC IH moderada: +45% AUC IH grave: no hay datos Se desconoce la importancia clínica que estos aumentos pueden suponer. Se ha descrito un caso de posible hepatotoxicidad precedido de una reacción alérgica sistémica.
	go de hipotensión postural. Con Cl <80 ml/min y en combinación con FPV/r administrar 150 mg c/12h. Con Cl <80 ml/min y en combinación con TPV/r no se requiere ajuste de dosis (300 mg c/12h). (Estos ajustes de dosis se recomiendan basándose en los datos de un estudio		reaction alergica sistemica.
	en insuficiencia renal y simulaciones farmacocinéticas, sin que su seguridad y eficacia hayan sido evaluadas clínicamente, por lo que se recomienda una estrecha monitorización).		

^{*}Las cápsulas y la solución oral de emtricitabina tienen diferente biodisponibilidad, de forma que con 240 mg de la solución oral (24 ml) se alcanzan unas concentraciones plasmáticas similares a las alcanzadas con 200 mg en cápsulas.

AN: análogos de nucleósidos; ANt: análogos de nucleótidos, CH: cirrosis hepática; Cl: aclaramiento de creatinina en ml/min; ERCA: enfermedad renal crónica avanzada, HD: hemodiálisis; IH: insuficiencia hepática; IP: inhibidores de la proteasa; IR: insuficiencia renal; NN: inhibidores de la transcriptasa inversa no análogos de nucleósidos.

Tabla 17. Seguridad de los antirretrovirales en el embarazo

Fármaco	FDA*	Paso a través de placenta (Cociente RN/madre)	Carcinogenicidad (animales)	Teratogenicidad (animales)	
Zidovudina	С	0,85	Sí	Si	
Didanosina	В	0,5	No	No	
Estavudina	С	0,76	Sí	No	
Lamivudina	С	1	No	No	
Abacavir	С	Si (ratas)	Sí	Si	
Tenofovir	В	0,95-0-99	Sí	No	
Emtricitabina	В	0,4-0,5	No	No	
Saquinavir	В	Mínimo	No	No	
Indinavir	С	Mínimo	Sí	No	
Ritonavir	В	Mínimo	Sí	Si	
Nelfinavir	В	Mínimo/Variable	Sí	No	
Fosamprenavir	С	¿?	Sí	No	
Lopinavir	С	0,2+/-0,13	Sí	Si	
Atazanavir	В	Mínimo/Variable	Sí	No	
Tipranavir	С	¿؟	No completado	No	
Darunavir	С	¿؟	Sí	No	
Nevirapina	В	1	Sí	No	
Efavirenz	D	1	Sí	Si	
Etravirina	В	¿؟	No completado	No	
Rilpivirina	B	<mark>?خ</mark>	<mark>Sí</mark>	No	
Enfuvirtida	В	No (basado en muy pocos datos)	No realizado	No	
Maraviroc	В	¿?	No	No	
		Ratas (1,5-2,5) Conejos (0,02)	No completado	No	

Tabla 18. Recomendaciones de profilaxis post-exposición

	PPE recomendada si:								
Exposición a:	Tipo exposición	Fuente							
Sangre u otros fluidos poten-	Penetración SC o IM con aguja IM/IV o sistema IV	VIH-1 +, o desconocido pero con factores de riesgo							
cialmente in- fectivos	Accidente percutáneo con instrumento cortante o aguja IM/SC o sutura Contacto > 15min con mucosas o piel no intacta.	VIH-1 +							
Secreciones Genitales	Sexo anal o vaginal	VIH-1+, o desconocido pero con factores de riesgo							
	Sexo oral receptivo con eyaculación	VIH-1+							
UDVP	Intercambio de jeringuilla o agujas	VIH-1+							
	Régimen terapéutico	:							
TDF/FTC + IP/r (ver tabla 4) Alternativas*: AZT+3TC + IP/r TDF/FTC + RAL TDF/FTC/EFV AZT/3TC + EFV AZT/3TC + TDF									

^{*} En casos de intolerancia o imposibilidad de usar TAR basados en IP/r o TDF. UDVP: usuarios de drogas por vía parenteral

Tabla 19. Coste mensual (PVL -7,5% +4%IVA en € *) de los antirretrovirales de uso más frecuente.*

Nombre genéri- co	Nombre comercial	Presentación	Coste (PVL)	Coste (PVL -7,5% +4% IVA) [#]	Coste/ unidad [#]	Unidades/ Mes	Coste mensual de la pauta (PVL -7,5% +4% IVA) [#]	Pauta
Análogos de nucl	eósido y nucleótido							
Abacavir	ZIAGEN	300 MG 60 COMP	225,69	217,12	3,62	60	217,12	ABC 300 mg/12h
Didanosina	VIDEX	400 MG 30 CAPS	154,38	148,52	4,95	30	148,52	ddl 400 mg/24h
Didanosina	VIDEX	250 MG 30 CAPS	96,48	92,81	3,09	30	92,81	ddl 250 mg/24h
Emtricitabina	EMTRIVA	200 MG 30 CAPS	147,35	141,75	4,72	30	141,74	FTC 200 mg/24h
Estavudina	ZERIT	40 MG 448 CAPS	1167,15	1122,80	2,51	60	150,38	d4T 40 mg/12h
Estavudina	ZERIT	30 MG 448 CAPS	1129,47	1086,55	2,43	60	145,52	d4T 30 mg/12h
Lamivudina	EPIVIR	300 MG 30 COMP	141,16	135,80	4,53	30	135,80	3TC 300 mg/24h
Lamivudina	LAMIVUDINA NORMON	300 MG 30 COMP	62,76	65,27 ^{&}	2,18	30	65,27 ^{&}	3TC 300 mg/24h
Tenofovir	VIREAD	245 MG 30 COMP	288,7	277,73	9,26	30	277,73	TDF 300 mg/24h
Zidovudina	RETROVIR	300 MG 300 COMP	788,65	758,69	2,53	60	151,74	AZT 300 mg/12h
Zidovudina	ZIDOVUDINA COMBINOP- HARM	300 MG 300 CAPS	414,06	430,62 ^{&}	1,44	60	86,12 ^{&}	AZT 300 mg/12h

Nombre genérico	Nombre comercial	Presentación	Coste (PVL)	Coste (PVL -7,5% +4% IVA) [#]	Coste/ unidad [#]	Unida- des/ mes	Coste mensual de la pauta con descuen- to del 7,5% [#]	Pauta
Análogos de nucl	eósido y nucleótido en combina	ación						
Abacavir+ Lamivudina	KIVEXA	600/300 MG 30 COMP	355,54	342,03	11,40	30	342,04	Kivexa 1c/24h
Emtricitabina+ Tenofovir	TRUVADA	200/245 MG 30 COMP	432,73	416,29	13,88	30	416,29	Truvada 1c/24h
Zidovudina+ Lamivudina	COMBIVIR	150/300 MG 60 COMP	290,41	279,38	4,66	60	279,38	Combivir 1c/12h
Zidovudina+ Lamivudina+ Abacavir	TRIZIVIR	300/150/300 MG 60 COMP	490,32	471,69	7,86	60	471,68	TZV 1c/12h
Inhibidores de la	transcriptasa inversa no nucleó	isidos						
Efavirenz	SUSTIVA	600 MG 30 COMP	265,03	254,96	8,50	30	254,96	EFV 600 mg/24h
Nevirapina	VIRAMUNE	200 MG 60 COMP	199,69	192,10	3,20	60	192,10	NVP 200 mg/12h
Nevirapina	VIRAMUNE lib. prolongada	400 MG 30 COMP	184,71	<mark>177,69</mark>	<mark>5,923</mark>	30	177,69	NVP 400 mg/24 h (LP)
•					3,37	120	404.04	
Etravirina	INTELENCE	100 MG 120 COMP 200 MG 60 COMP	420	404,04	6,73	60	404,04	ETR 200 mg/12 h

Efavirenz + Emtricitabina+ Tenofovir	ATRIPLA	600 MG 200 MG 245 MG COMP	701,08	674,44	22,48	30	674,44	Atripla 1c/24h
Rilpivirina+		25 MG						
Emtricitabina+	EVIPLERA	200 MG	<mark>627,87</mark>	<mark>604,01</mark>	<mark>20,13</mark>	<mark>30</mark>	<mark>604,01</mark>	Eviplera 1c/24h
Tenofovir		245 MG COMP						

Nombre genéri- co	Nombre comercial	Presentación	Coste (PVL)	Coste (PVL -7,5% +4% IVA) [#]	Coste/ unidad [#]	Unida- des/ mes	Coste/ mes [#]	Coste/ mes RTV [#]	Coste mensual de la pauta con descuento del 7,5% [#]	Pauta
Inhibidores de la	proteasa									
Atazanavir	REYATAZ	200 MG 60 CAPS	436,59	420,00	7,00	60	420,00		420,00	ATV 400 mg/24h
Atazanavir	REYATAZ	300 MG 30 CAPS	436,59	420,00	14,00	30	420,00	21,61	441,61	ATV/r 300/100 mg/24h
Darunavir	PREZISTA	600 MG 60 COMP	640,81	616,46	10,27	60	616,46	43,22	659,68	DRV/r 600/100 mg/12h
Darunavir	PREZISTA	400 MG 60 COMP	427,21	410,98	6,85	60	410,98	21,61	432,59	DRV/r 800/100 mg/24h [@]
Fosamprenavir	TELZIR	700 MG 60 COMP	316,89	304,85	5,08	60	304,85	43,22	348,07	FPV/r 700/100 mg/12h
Indinavir	CRIXIVAN	400 MG 180 CAPS	261,75	251,80	1,40	120	167,87	43,22	211,09	IDV/r 800/100 mg/12h
Lopinavir+ Ritonavir comp	KALETRA	120 COMP	400,02	384,82	3,21	120	384,82		384,82	LPV/r 2 comp/12h
Nelfinavir	VIRACEPT	250 MG 270 COMP	295,11	283,89	1,05	300	315,44		315,44	NFV 1250 mg/12h
Saquinavir	INVIRASE	500 MG 120 COMP	303,96	292,40	2,44	120	292,40	43,22	335,62	SQV/r 1000/100 mg/12h
Ritonavir	NORVIR	100 MG 30 COMP	22,46	21,61	0,72	60		43,22	43,22	RTV 100 mg/12h
Tipranavir	APTIVUS	250 MG 120 CAPS	705	678,21	5,65	120	678,21	86,44	764,65	TPV/r 500/200 mg/12h

Nombre genérico	Nombre comercial	Presentación	Coste (PVL)	Coste (PVL -7,5% +4% IVA) [#]	Coste/ Unidad	Unidades/ mes	Coste mensual de la pauta con descuento del 7,5%#	Pauta
Inhibidores de la j	fusión							
Enfuvirtida	FUZEON	90 MG/ML 60 VIALES	1525,36	1467,40	24,46	60	1467,39	ENF 90 mg/12h
Inhibidores de los	coreceptores CCR5							
Maraviroc	CELSENTRI	150 Y 300 MG 60 COMP	706,8	679,94	11,33	60	679,94	MVC 300 (ó 150) mg/12 h
Maraviroc	CELSENTRI	150 Y 300 MG 60 COMP	706,8	679,94	11,33	30	339,97	MVC 300 (ó 150) mg/24 h
Inhibidores de la i	integrasa							
Raltegravir	ISENTRESS	400 MG 60 COMP	690	663,78	11,06	60	663,78	RAL 400 mg/12h

^{*} Se indica el PVL a Enero de 2013, así como el PVL con descuento del 7,5% + 4% IVA.

[#] Incluye la deducción obligatoria del 7,5% sobre el precio de compra de medicamentos no genéricos y no afectados por el sistema de precios de referencia adquiridos con cargo a fondos públicos del Sistema Nacional de Salud, a través de los servicios de farmacia de los hospitales, centros de salud y estructuras de atención primaria (Real Decreto-ley 8/2010, de 20 de mayo: medidas extraordinarias para la reducción del déficit público). Cabe considerar que normalmente los precios que se pagan son algo inferiores al PVL+ 4%IVA-7,5% y pueden variar entre Comunidades Autónomas e incluso entre distintos hospitales en una misma Comunidad, dependiendo de las negociaciones llevadas a cabo con la Industria Farmacéutica. Sin embargo, se ha empleado el PVL -7,5% +4% IVA como aproximación, por ser unitario en todo el Estado.

[&] La deducción obligatoria del 7,5% Real Decreto-ley 8/2010 no es aplicable a los medicamentos genéricos.

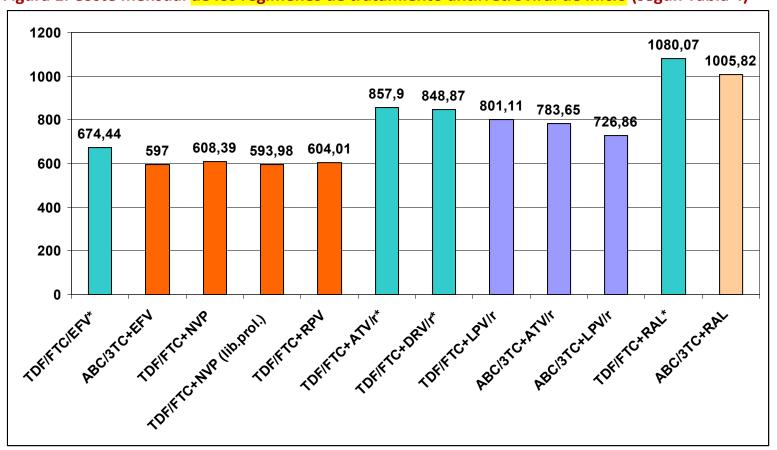


Figura 1. Coste mensual de los regímenes de tratamiento antirretroviral de inicio (según Tabla 4)¹

Calculado según (PVL-7,5%)+ 4% IVA (basándose en los combos Truvada®, Kivexa®, Atripla® y Eviplera®). *Solo estas pautas han sido consideradas como preferentes por la totalidad del panel de expertos.

[⊥]Ordenado por tercer fármaco (ver tabla 4)

REFERENCIAS BIBLIOGRÁFICAS

- 1. Consejo Asesor Clínico del Plan Nacional sobre el SIDA. Tratamiento antirretroviral del adulto (4ª edición). Madrid. Ministerio de Sanidad y Consumo, 1997: (10) 1-16.
- 2. Panel de de Expertos de Gesida y Plan Nacional sobre el Sida. Documento de consenso de GESIDA/ Plan Nacional sobre el Sida respecto al tratamiento antirretroviral en adultos infectados por el virus de la inmunodeficiencia humana (actualización enero 2012). Enferm Infecc Microbiol Clin 2012; 30:e1–e89.
- 3. Thompson MA, Aberg JA, Hoy JF, Tekenti A, Benson C, Cahn P, et al. Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel. JAMA. 2012;308:387-402.
- Department of Human Health Service Panel on Antiretroviral Guidelines for Adults and Adolescents. Guideline for the use of antiretroviral agents in HIV-1-infected adults and adolescents: March 27, 2012. Disponible en: http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf (Acceso 15 noviembre 2012).
- 5. Kish MA. Guide to development of practice guidelines. Clin Infect Dis 2001; 32:851-854.
- 6. Palella FJ, Jr., Delaney KM, Moorman AC, Loveless MO, Fuhrer J, Satten GA, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV Outpatient Study Investigators. N Engl J Med 1998; 338:853-860.
- Knobel H, Polo R, Escobar I (Coordinadores). Recomendaciones Gesida/SEFH/ PNS para mejorar la adherencia al tratamiento antirretroviral (Actualización junio de 2008). Disponible en: www.gesida.seimc.org/pcientifica/fuentes/DcyRc/Gesida dcyrc2008 adhere nciaTAR.pdf (Acceso 15.12.2012)
- 8. Lohse N, Hansen AB, Pedersen G, Kronborg G, Gerstoft J, Sorensen HT, et al. Survival of persons with and without HIV infection in Denmark, 1995-2005. Ann Intern Med 2007; 146:87-95.
- 9. Sterne JA, May M, Costagliola D, de WF, Phillips AN, Harris R, et al. Timing of initiation of antiretroviral therapy in AIDS-free HIV-1-infected patients: a collaborative analysis of 18 HIV cohort studies. Lancet 2009; 373:1352-1363.
- 10. Jaén A, Esteve A, Miró JM, Tural C, Montoliu A, Ferrer E, et al. Determinants of HIV progression and assessment of the optimal time to initiate highly ac-

- tive antiretroviral therapy: PISCIS Cohort (Spain). J Acquir Immune Defic Syndr 2008; 47:212-220.
- 11. Montessori V, Press N, Harris M, Akagi L, Montaner JS. Adverse effects of antiretroviral therapy for HIV infection. CMAJ 2004;170:229-238.
- 12. Josefsson L, Dahl V, Palmer S. Can HIV infection be eradicated through use of potent antiviral agents? Curr Opin Infect Dis 2010; 23:628-632.
- 13. García F, de Lazzari E, Plana M, Castro P, Mestre G, Nomdedeu M, et al. Longterm CD4+ T-cell response to highly active antiretroviral therapy according to baseline CD4+ T-cell count. J Acquir Immune Defic Syndr 2004; 36:702-713.
- 14. Plana M, García F, Gallart T, Miró JM, Gatell JM. Lack of T-cell proliferative response to HIV-1 antigens after 1 year of highly active antiretroviral treatment in early HIV-1 disease. Immunology Study Group of Spanish EARTH-1 Study. Lancet 1998; 352:1194-1195.
- 15. Landon BE, Wilson IB, McInnes K, Landrum MB, Hirschhorn LR, Marsden PV, et al. Physician specialization and the quality of care for human immunodeficiency virus infection. Arch Intern Med 2005; 165:1133-1139.
- Centers for Disease Control and Prevention. 2009 Compendium of evidence-based HIV prevention interventions. Disponible en www.cdc.gov/hiv/topics/research/prs/evidence-based-interventions.htm (Acceso: 15.12.2012)
- 17. Von Wichmann MA, Locutura J, Blanco JR, Riera M, Suárez-Lozano I, Saura RM et al. Indicadores de calidad asistencial de GESIDA para la atención de personas infectadas por el VIH/sida. Enferm Infecc Microbiol Clin 2010; 28 (Supl 5):6-88.
- 18. Kelleher AD, Carr A, Zaunders J, Cooper DA. Alterations in the immune response of human immunodeficiency virus (HIV)-infected subjects treated with an HIV-specific protease inhibitor, ritonavir. J Infect Dis 1996; 173:321-329.
- 19. Li TS, Tubiana R, Katlama C, Calvez V, Ait Mohand H, Autran B. Long-lasting recovery in CD4 T-cell function and viral-load reduction after highly active antiretroviral therapy in advanced HIV-1 disease. Lancet 1998; 351:1682-1686.
- 20. Kostense S, Raaphorst FM, Notermans DW, Joling J, Hooibrink B, Pakker NG, et al. Diversity of the T-cell receptor BV repertoire in HIV-1-infected patients reflects the biphasic CD4+ T-cell repopulation kinetics during highly active antiretroviral therapy. AIDS 1998; 12:235-40.
- 21. Peña JM, Miro JM. Restauración inmunológica en pacientes con Sida. ¿Requiem por las profilaxis? Med Clin (Barc) 1999; 113: 375-8.

- 22. Lopez Bernaldo de Quiros JC, Miro JM, Pena JM, Podzamczer D, Alberdi JC, Martinez E, et al. A randomized trial of the discontinuation of primary and secondary prophylaxis against *Pneumocystis carinii* pneumonia after highly active antiretroviral therapy in patients with HIV infection. Grupo de Estudio del SIDA 04/98. N Engl J Med 2001; 344: 159-167.
- 23. Deeks SG, Hecht FM, Swanson M, Elbeik T, Loftus R, Cohen PT, et al. HIV RNA and CD4 cell count response to protease inhibitor therapy in an urban AIDS clinic: response to both initial and salvage therapy. AIDS 1999;13: 35-43.
- 24. Deeks SG, Barbour JD, Martin JN, Swanson MS, Grant RM. Sustained CD4+ T cell response after virologic failure of protease inhibitor-based regimens in patients with human immunodeficiency virus infection. J Infect Dis 2000;181: 946-953.
- 25. Kaufmann D, Pantaleo G, Sudre P, Telenti A. CD4-cell count in HIV-1-infected individuals remaining viraemic with highly active antiretroviral therapy (HAART). Swiss HIV Cohort Study. Lancet 1998; 351:723-724.
- 26. Garcia F, Vidal C, Plana M, Cruceta A, Gallart MT, Pumarola T, et al. Residual low-level viral replication could explain discrepancies between viral load and CD4+ cell response in human immunodeficiency virus-infected patients receiving antiretroviral therapy. Clin Infect Dis 2000; 30:392-394.
- 27. Dronda F, Moreno S, Moreno A, Casado JL, Perez-Elias MJ, Antela A. Longterm outcomes among antiretroviral-naive human immunodeficiency virus-infected patients with small increases in CD4+ cell counts after successful virologic suppression. Clin Infect Dis 2002; 35:1005-1009.
- 28. Gandhi RT. Cirrhosis is associated with low CD4+ T cell counts: implications for HIV-infected patients with liver disease. Clin Infect Dis 2007; 44:438-440.
- 29. McGovern BH, Golan Y, Lopez M, Pratt D, Lawton A, Moore G, et al. The impact of cirrhosis on CD4+ T cell counts in HIV-seronegative patients. Clin Infect Dis 2007; 44:431-437.
- 30. Bongiovanni M, Gori A, Lepri AC, Antinori A, De LA, Pagano G, et al. Is the CD4 cell percentage a better marker of immunosuppression than the absolute CD4 cell count in HIV-infected patients with cirrhosis? Clin Infect Dis 2007; 45:650-653.
- 31. D'Egidio GE, Kravcik S, Cooper CL, Cameron DW, Fergusson DA, Angel JB. *Pneumocystis jiroveci* pneumonia prophylaxis is not required with a CD4+ T-cell count <200 cells/microl when viral replication is suppressed. AIDS 2007; 21:1711-1715.
- 32. Brambilla D, Reichelderfer PS, Bremer JW, Shapiro DE, Hershow RC, Katzenstein DA, et al. The contribution of assay variation and biological variation to the total variability of plasma HIV-1 RNA measurements. The Women Infant

- Transmission Study Clinics. Virology Quality Assurance Program. AIDS 1999; 13:2269-2279.
- 33. Lopez A, Caragol I, Candeias J, Villamor N, Echaniz P, Ortuno F, et al. Enumeration of CD4+ T-cells in the peripheral blood of HIV-infected patients: an interlaboratory study of the FACSCount system. Cytometry 1999; 38:231-237.
- 34. Kempf DJ, Rode RA, Xu Y, Sun E, Heath-Chiozzi ME, Valdes J, et al. The duration of viral suppression during protease inhibitor therapy for HIV-1 infection is predicted by plasma HIV-1 RNA at the nadir. AIDS 1998; 12:9-14.
- 35. Raboud JM, Montaner JS, Conway B, Rae S, Reiss P, Vella S, et al. Suppression of plasma viral load below 20 copies/ml is required to achieve a long-term response to therapy. AIDS 1998; 12:1619-1624.
- 36. Demeter LM, Hughes MD, Coombs RW, Jackson JB, Grimes JM, Bosch RJ, et al. Predictors of virologic and clinical outcomes in HIV-1-infected patients receiving concurrent treatment with indinavir, zidovudine, and lamivudine. AIDS Clinical Trials Group Protocol 320. Ann Intern Med 2001; 135:954-964.
- 37. Huang W, De G, V, Fischl M, Hammer S, Richman D, Havlir D, et al. Patterns of plasma human immunodeficiency virus type 1 RNA response to antiretroviral therapy. J Infect Dis 2001; 183:1455-1465.
- 38. Hicks C, King MS, Gulick RM, White Jr AC, Eron Jr JJ, Kessler HA, et al. Longterm safety and durable antiretroviral activity of lopinavir/ritonavir in treatment-naive patients: 4 year follow-up study. AIDS 2004; 18:775-779.
- 39. Siliciano RF. Scientific rationale for antiretroviral therapy in 2005: viral reservoirs and resistance evolution. Top HIV Med 2005;13(3):96-100.
- 40. Nettles RE, Kieffer TL, Simmons RP, Cofrancesco J, Jr., Moore RD, Gallant JE, et al. Genotypic resistance in HIV-1-infected patients with persistently detectable low-level viremia while receiving highly active antiretroviral therapy. Clin Infect Dis 2004; 39:1030-1037.
- 41. Greub G, Cozzi-Lepri A, Ledergerber B, Staszewski S, Perrin L, Miller V, et al. Intermittent and sustained low-level HIV viral rebound in patients receiving potent antiretroviral therapy. AIDS 2002; 16:1967-1969.
- 42. Jones LE, Perelson AS. Transient viremia, plasma viral load, and reservoir replenishment in HIV-infected patients on antiretroviral therapy. J Acquir Immune Defic Syndr 2007; 45:483-493.
- 43. Havlir DV, Bassett R, Levitan D, Gilbert P, Tebas P, Collier AC, et al. Prevalence and predictive value of intermittent viremia with combination HIV therapy. JAMA 2001; 286:171-179.

- 44. Lampe FC, Johnson MA, Lipman M, Loveday C, Youle M, Ransom D, et al. Viral breakthrough after suppression with highly active antiretroviral therapy: experience from 233 individuals with viral loads of less than 50 copies/ml followed for up to 4 years. AIDS 2003; 17:768-70.
- 45. Mira JA, Macias J, Nogales C, Fernandez-Rivera J, Garcia-Garcia JA, Ramos A, et al. Transient rebounds of low-level viraemia among HIV-infected patients under HAART are not associated with virological or immunological failure. Antivir Ther 2002; 7:251-256.
- 46. Lee PK, Kieffer TL, Siliciano RF, Nettles RE. HIV-1 viral load blips are of limited clinical significance. J Antimicrob Chemother 2006; 57:803-805.
- 47. Macias J, Palomares JC, Mira JA, Torres MJ, Garcia-Garcia JA, Rodriquez JM, et al. Transient rebounds of HIV plasma viremia are associated with the emergence of drug resistance mutations in patients on highly active antiretroviral therapy. J Infect 2005; 51:195-200.
- 48. Garcia-Gasco P, Maida I, Blanco F, Barreiro P, Martin-Carbonero L, Vispo E, et al. Episodes of low-level viral rebound in HIV-infected patients on antiretroviral therapy: frequency, predictors and outcome. J Antimicrob Chemother 2008; 61:699-704.
- 49. Saag MS, Holodniy M, Kuritzkes DR, O'Brien WA, Coombs R, Poscher ME, et al. HIV viral load markers in clinical practice. Nat Med 1996; 2:625-629.
- 50. Khoo SH, Gibbons SE, Back DJ. Therapeutic drug monitoring as a tool in treating HIV infection. AIDS 2001; 15 (Suppl 5):171-181.
- 51. Nettles RE, Kieffer TL, Parsons T, Johnson J, Cofrancesco J, Jr., Gallant JE, et al. Marked intraindividual variability in antiretroviral concentrations may limit the utility of therapeutic drug monitoring. Clin Infect Dis 2006; 42:1189-1196.
- 52. Schapiro JM, Winters MA, Stewart F, Efron B, Norris J, Kozal MJ, et al. The effect of high-dose saquinavir on viral load and CD4+ T-cell counts in HIV-infected patients. Ann Intern Med 1996; 124:1039-1050.
- 53. Hoetelmans RM, Reijers MH, Weverling GJ, Ten Kate RW, Wit FW, Mulder JW, et al. The effect of plasma drug concentrations on HIV-1 clearance rate during quadruple drug therapy. AIDS 1998; 12:111-115.
- 54. Casado JL, Moreno S, Hertogs K, Dronda F, Antela A, Dehertogh P, et al. Plasma drug levels, genotypic resistance, and virological response to a nelfinavir plus saquinavir-containing regimen. AIDS 2002; 16:47-52.
- 55. Harris M, Durakovic C, Rae S, Raboud J, Fransen S, Shillington A, et al. A pilot study of nevirapine, indinavir, and lamivudine among patients with advanced human immunodeficiency virus disease who have had failure of combination nucleoside therapy. J Infect Dis 1998; 177:1514-1520.

- 56. Fatkenheuer G, Hoetelmans RM, Hunn N, Schwenk A, Franzen C, Reiser M, et al. Salvage therapy with regimens containing ritonavir and saquinavir in extensively pretreated HIV-infected patients. AIDS 1999; 13:1485-1489.
- 57. Veldkamp AI, Weverling GJ, Lange JM, Montaner JS, Reiss P, Cooper DA, et al. High exposure to nevirapine in plasma is associated with an improved virological response in HIV-1-infected individuals. AIDS 2001; 15:1089-1095.
- 58. DiCenzo R, Forrest A, Fischl MA, Collier A, Feinberg J, Ribaudo H, et al. Pharmacokinetics of indinavir and nelfinavir in treatment-naive, human immunodeficiency virus-infected subjects. Antimicrob Agents Chemother 2004; 48:918-923.
- 59. Csajka C, Marzolini C, Fattinger K, Decosterd LA, Fellay J, Telenti A, et al. Population pharmacokinetics and effects of efavirenz in patients with human immunodeficiency virus infection. Clin Pharmacol Ther 2003; 73:20-30.
- 60. Dieleman JP, Gyssens IC, Van Der Ende ME, de Marie S, Burger DM. Urological complaints in relation to indinavir plasma concentrations in HIV-infected patients. AIDS 1999; 13:473-478.
- 61. Gonzalez de Requena D, Núñez M, Jimenez-Nacher I, Soriano V. Liver toxicity caused by nevirapine. AIDS 2002; 16:290-291.
- Gonzalez-Requena D, Núñez M, Jimenez-Nacher I, Gonzalez-Lahoz J, Soriano V. Short communication: liver toxicity of lopinavir-containing regimens in HIVinfected patients with or without hepatitis C coinfection. AIDS Res Hum Retroviruses 2004; 20:698-700.
- 63. Gutiérrez F, Padilla S, Navarro A, Masia M, Hernandez I, Ramos J, et al. Lop-inavir plasma concentrations and changes in lipid levels during salvage therapy with lopinavir/ritonavir-containing regimens. J Acquir Immune Defic Syndr 2003; 33:594-600.
- 64. González de Requena D, Blanco F, García-Benayas T, Jiménez-Nacher I, González-Lahoz J, Soriano V. Correlation between lopinavir plasma levels and lipid abnormalities in patients taking lopinavir/ritonavir. AIDS Patient Care STDS 2003; 17:443-445.
- 65. Gallego L, Barreiro P, del Río R, González de Requena D, Rodríguez-Albariño A, Gonzalez-Lahoz J, et al. Analyzing sleep abnormalities in HIV-infected patients treated with efavirenz. Clin Infect Dis 2004; 38:430-432.
- 66. Gutiérrez F, Navarro A, Padilla S, Anton R, Masia M, Borras J et al. Prediction of neuropsychiatric adverse events associated with long-term efavirenz therapy, using plasma drug level monitoring. Clin Infect Dis 2005; 41:1648-1653.
- 67. Drake JW. Rates of spontaneous mutation among RNA viruses. Proc Natl Acad Sci USA 1993; 90:4171-4175.

- 68. Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of spontaneous mutation. Genetics 1998; 148:1667-1686.
- 69. Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995; 69:5087-5094.
- 70. Ho DD, Neumann AU, Perelson AS, Chen W, Leonard JM, Markowitz M. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 1995; 373:123-126.
- 71. Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 1995; 373:117-122.
- 72. Coffin JM. HIV population dynamics in vivo: implications for genetic variation, pathogenesis, and therapy. Science 1995; 267:483-489.
- 73. Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 1996; 271:1582-1586.
- 74. Schuurman R, Nijhuis M, van Leeuwen R, Schipper P, de Jong D, Collis P, et al. Rapid changes in human immunodeficiency virus type 1 RNA load and appearance of drug-resistant virus populations in persons treated with lamivudine (3TC). J Infect Dis 1995; 171:1411-1419.
- 75. Molla A, Korneyeva M, Gao Q, Vasavanonda S, Schipper PJ, Mo HM, et al. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. Nat Med 1996; 2:760-766.
- 76. Johnson VA, Brun-Vezinet F, Clotet B, Kuritzkes DR, Pillay D, Schapiro JM, et al. Update of drug resistance mutations in HIV-1: Fall 2006. Top HIV Med 2006; 14:125-130.
- 77. Hirsch MS, Brun-Vezinet F, Clotet B, Conway B, Kuritzkes DR, D'Aquila RT, et al. Antiretroviral drug resistance testing in adults infected with human immunodeficiency virus type 1: 2003 recommendations of an International AIDS Society-USA Panel. Clin Infect Dis 2003; 37:113-128.
- 78. Devereux HL, Youle M, Johnson MA, Loveday C. Rapid decline in detectability of HIV-1 drug resistance mutations after stopping therapy. AIDS 1999; 13:123-127.
- 79. Qari SH, Respess R, Weinstock H, Beltrami EM, Hertogs K, Larder BA, et al. Comparative analysis of two commercial phenotypic assays for drug susceptibility testing of human immunodeficiency virus type 1. J Clin Microbiol 2002; 40:31-35.

- 80. Larder BA, Kemp SD, Hertogs K. Quantitative prediction of HIV-1 phenotypic drug resistance from genotypes: the virtual phenotype (VirtualPhenotype). Antivir Ther 2000; 5(Suppl 3):49.
- 81. Novak RM, Chen L, MacArthur RD, Baxter JD, Huppler HK, Peng G, et al. Prevalence of antiretroviral drug resistance mutations in chronically HIV-infected, treatment-naive patients: implications for routine resistance screening before initiation of antiretroviral therapy. Clin Infect Dis 2005; 40:468-474.
- 82. Wensing AM, van de Vijver DA, Angarano G, Asjo B, Balotta C, Boeri E, et al. Prevalence of drug-resistant HIV-1 variants in untreated individuals in Europe: implications for clinical management. J Infect Dis 2005; 192:958-966.
- 83. Cane P, Chrystie I, Dunn D, Evans B, Geretti AM, Green H, et al. Time trends in primary resistance to HIV drugs in the United Kingdom: multicentre observational study. BMJ 2005; 331:1368.
- 84. de Mendoza C., Rodríguez C, Colomina J, Tuset C, García F, Eiros JM et al. Resistance to nonnucleoside reverse-transcriptase inhibitors and prevalence of HIV type 1 non-B subtypes are increasing among persons with recent infection in Spain. Clin Infect Dis 2005; 41:1350-1354.
- 85. Palacios R, Viciana I, Pérez de Pedro I, de la Torre J, Ropero F, Fernández S, et al. Prevalencia de mutaciones de resistencia primaria en los nuevos diagnósticos de infección por el VIH en la provincia de Málaga. Enferm Infecc Microbiol Clin 2008; 26:141-145.
- 86. Sánchez Oñoro M., López MJ, Santana MA, Andes JM, Campelo FA. Resistencias primarias a los fármacos antirretrovirales en los pacientes diagnosticados de infección por el VIH en Gran Canaria entre los años 2002-2005. Enferm Infecc Microbiol Clin 2007; 25:437-440.
- 87. García F, Pérez-Cachafeiro S, Guillot V, Alvarez M, Pérez-Romero P, Pérez-Elias MJ, et al. Transmission of HIV drug resistance and non-B subtype distribution in the Spanish cohort of antiretroviral treatment naive HIV-infected individuals (CoRIS). Antiviral Res 2011; 91:150-153.
- 88. Monge S, Guillot V, Alvarez M, Peña A, Viciana P, García-Bujalance S, et al. Analysis of transmitted drug resistance in Spain in the years 2007–2010 documents a decline in mutations to the non-nucleoside drug class. Clin Microbiol Infect 2012; 18:E485-E490.
- 89. Monge S, Guillot V, Alvarez M, Viciana I, Delgado R, LA Paz, et al. Transmisión de cepas con mutaciones de resistencia en los pacientes naïve en CoRIS. Actualización 2011. IV Congreso nacional GESIDA, Toledo 27-30 de noviembre 2012. P-083. Enferm Infecc Microbiol Clin 2012; 30 (Especial Congreso 2):66.

- 90. Martin L, Guillot V, Peña A, Alvarez M, Chueca N, Lozano A, et al. Resistencias primarias a los inhibidores de la integrasa en los nuevos diagnósticos de Andalucía Oriental. IV Congreso Nacional GESIDA, Toledo 27-30 de noviembre 2012. PO-05. Enferm Infecc Microbiol Clin 2012; 30 (Especial Congreso 2): 9.
- 91. Mitsuya Y, Varghese V, Wang C, Liu TF, Holmes SP, Jayakumar P, et al. Minority human immunodeficiency virus type 1 variants in antiretroviral-naive persons with reverse transcriptase codon 215 revertant mutations. J Virol 2008; 82:10747-10755.
- 92. Balduin M, Oette M, Daumer MP, Hoffmann D, Pfister HJ, Kaiser R. Prevalence of minor variants of HIV strains at reverse transcriptase position 103 in therapy-naive patients and their impact on the virological failure. J Clin Virol 2009; 45:34-38.
- 93. Geretti AM, Fox ZV, Booth CL, Smith CJ, Phillips AN, Johnson M, et al. Low-frequency K103N strengthens the impact of transmitted drug resistance on virologic responses to first-line efavirenz or nevirapine-based highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2009; 52:569-573.
- 94. Simen BB, Simons JF, Hullsiek KH, Novak RM, MacArthur RD, Baxter JD, et al. Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes. J Infect Dis 2009; 199:693-701.
- 95. Metzner KJ, Giulieri SG, Knoepfel SA, Rauch P, Burgisser P, Yerly S, et al. Minority quasispecies of drug-resistant HIV-1 that lead to early therapy failure in treatment-naive and -adherent patients. Clin Infect Dis 2009; 48:239-247.
- 96. Coovadia A, Hunt G, Abrams EJ, Sherman G, Meyers T, Barry G, et al. Persistent minority K103N mutations among women exposed to single-dose nevirapine and virologic response to nonnucleoside reverse-transcriptase inhibitor-based therapy. Clin Infect Dis 2009; 48:462-472.
- 97. Peuchant O, Thiebaut R, Capdepont S, Lavignolle-Aurillac V, Neau D, Morlat P, et al. Transmission of HIV-1 minority-resistant variants and response to first-line antiretroviral therapy. AIDS 2008; 22:1417-1423.
- 98. Johnson JA, Li JF, Wei X, Lipscomb J, Irlbeck D, Craig C, et al. Minority HIV-1 drug resistance mutations are present in antiretroviral treatment-naive populations and associate with reduced treatment efficacy. PLoS Med 2008; 5:e158.
- 99. Vandamme AM, Camacho RJ, Ceccherini-Silberstein F, De LA, Palmisano L, Paraskevis D, et al. European recommendations for the clinical use of HIV drug resistance testing: 2011 update. AIDS Rev 2011; 13:77-108.
- 100. Li JZ, Paredes R, Ribaudo HJ, Svarovskaia ES, Metzner KJ, Kozal MJ, et al. Low-frequency HIV-1 drug resistance mutations and risk of NNRTI-based an-

- tiretroviral treatment failure: a systematic review and pooled analysis. JAMA 2011; 305:1327-1335.
- 101. Havlir DV, Marschner IC, Hirsch MS, Collier AC, Tebas P, Bassett RL, et al. Maintenance antiretroviral therapies in HIV infected patients with undetectable plasma HIV RNA after triple-drug therapy. AIDS Clinical Trials Group Study 343 Team. N Engl J Med 1998; 339:1261-1268.
- 102. Huisman MT, Smit JW, Schinkel AH. Significance of P-glycoprotein for the pharmacology and clinical use of HIV protease inhibitors. AIDS 2000; 14:237-42.
- 103. Baxter JD, Mayers DL, Wentworth DN, Neaton JD, Hoover ML, Winters MA, et al. A randomized study of antiretroviral management based on plasma genotypic antiretroviral resistance testing in patients failing therapy. CPCRA 046 Study Team for the Terry Beirn Community Programs for Clinical Research on AIDS. AIDS 2000; 14:83-93.
- 104. Clevenbergh P, Durant J, Halfon P, del Giudice P, Mondain V, Montagne N, et al. Persisting long-term benefit of genotype-guided treatment for HIV-infected patients failing HAART. The Viradapt Study: week 48 follow-up. Anti-vir Ther 2000; 5:65-70.
- 105. Tural C, Ruiz L, Holtzer C, Schapiro J, Viciana P, González J, et al. Clinical utility of HIV-1 genotyping and expert advice: the Havana trial. AIDS 2002; 16:209-218.
- 106. Cohen CJ, Hunt S, Sension M, Farthing C, Conant M, Jacobson S, et al. A randomized trial assessing the impact of phenotypic resistance testing on antiretroviral therapy. AIDS 2002; 16:579-588.
- 107. Cingolani A, Antinori A, Rizzo MG, Murri R, Ammassari A, Baldini F, et al. Usefulness of monitoring HIV drug resistance and adherence in individuals failing highly active antiretroviral therapy: a randomized study (ARGENTA). AIDS 2002; 16:369-379.
- 108. Kemper CA, Witt MD, Keiser PH, Dube MP, Forthal DN, Leibowitz M, et al. Sequencing of protease inhibitor therapy: insights from an analysis of HIV phenotypic resistance in patients failing protease inhibitors. AIDS 2001; 15:609-615.
- 109. Meynard JL, Vray M, Morand-Joubert L, Race E, Descamps D, Peytavin G, et al. Phenotypic or genotypic resistance testing for choosing antiretroviral therapy after treatment failure: a randomized trial. AIDS 2002; 16:727-736.
- 110. Mazzotta F, Lo CS, Torti C, Tinelli C, Pierotti P, Castelli F, et al. Real versus virtual phenotype to guide treatment in heavily pretreated patients: 48-week follow-up of the Genotipo-Fenotipo di Resistenza (GenPheRex) trial. J Acquir Immune Defic Syndr 2003; 32:268-280.

- 111. Pérez-Elías MJ, García-Arota I, Muñoz V, Santos I, Sanz J, Abraira V, et al. Phenotype or virtual phenotype for choosing antiretroviral therapy after failure: a prospective, randomized study. Antivir Ther 2003; 8:577-584.
- 112. Torre D, Tambini R. Antiretroviral drug resistance testing in patients with HIV-1 infection: A meta-analysis study. HIV Clin Trials 2002; 3:1-8.
- 113. Hughes CA, Foisy MM, Dewhurst N, Higgins N, Robinson L, Kelly DV, et al. Abacavir hypersensitivity reaction: an update. Ann Pharmacother 2008; 42:387-396.
- 114. Mallal S, Phillips E, Carosi G, Molina JM, Workman C, Tomazic J, et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 2008; 358: 568-579.
- 115. Saag M, Balu R, Phillips E, Brachman P, Martorell C, Burman W, et al. High sensitivity of human leukocyte antigen-b*5701 as a marker for immunologically confirmed abacavir hypersensitivity in white and black patients. Clin Infect Dis 2008; 46:1111-1118.
- 116. Moore JP, Kitchen SG, Pugach P, Zack JA. The CCR5 and CXCR4 coreceptors-central to understanding the transmission and pathogenesis of human immunodeficiency virus type 1 infection. AIDS Res Hum Retroviruses 2004; 20:111-126.
- 117. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR. Change in coreceptor use coreceptor use correlates with disease progression in HIV-1--infected individuals. J Exp Med 1997; 185:621-628.
- 118. Hunt PW, Harrigan PR, Huang W, Bates M, Williamson DW, McCune JM, et al. Prevalence of CXCR4 tropism among antiretroviral-treated HIV-1-infected patients with detectable viremia. J Infect Dis 2006; 194:926-930.
- 119. Wilkin TJ, Su Z, Kuritzkes DR, Hughes M, Flexner C, Gross R, et al. HIV type 1 chemokine coreceptor use among antiretroviral-experienced patients screened for a clinical trial of a CCR5 inhibitor: AIDS Clinical Trial Group A5211. Clin Infect Dis 2007; 44:591-595.
- 120. Whitcomb JM, Huang W, Fransen S, Limoli K, Toma J, Wrin T, et al. Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob Agents Chemother 2007; 51:566-575.
- 121. Low AJ, Dong W, Chan D, Sing T, Swanstrom R, Jensen M, et al. Current V3 genotyping algorithms are inadequate for predicting X4 co-receptor usage in clinical isolates. AIDS 2007; 21:F17-F24.

- 122. Chueca N, Garrido C, Alvárez M, Poveda E, de Dios LJ, Zahonero N, et al. Improvement in the determination of HIV-1 tropism using the V3 gene sequence and a combination of bioinformatic tools. J Med Virol 2009; 81:763-767.
- 123. Poveda E, Seclen E, González MM, García F, Chueca N, Aguilera A, et al. Design and validation of new genotypic tools for easy and reliable estimation of HIV tropism before using CCR5 antagonists. J Antimicrob Chemother 2009; 63:1006-1010.
- 124. Seclén E, Garrido C, González MM, González-Lahoz J, de Mendoza C, Soriano V, et al. High sensitivity of specific genotypic tools for detection of X4 variants in antiretroviral-experienced patients suitable to be treated with CCR5 antagonists. J Antimicrob Chemother 2010; 65:1486-1492.
- 125. McGovern RA, Thielen A, Mo T, Dong W, Woods CK, Chapman D, et al. Population-based V3 genotypic tropism assay: a retrospective analysis using screening samples from the A4001029 and MOTIVATE studies. AIDS 2010; 24:2517-2525.
- 126. McGovern R Thielen A, Portsmouth S, Mo T, Dong W, Woods CK, et al. Population-based Sequencing of the V3-loop can Predict the Virological Response to Maraviroc in Treatment-naïve Patients of the MERIT Trial. J Acquir Immune Defic Syndr 2012; 61:279-286.
- 127. Poveda E, Alcamí J, Paredes R, Córdoba J, Gutiérrez F, Llibre JM, et al. Genotypic determination of HIV tropism-clinical and methodological recommendations to guide the therapeutic use of CCR5 antagonists. AIDS Rev 2010; 12:135-148.
- 128. Vandekerckhove LP, Wensing AM, Kaiser R, Brun-Vezinet F, Clotet B, De LA, et al. European guidelines on the clinical management of HIV-1 tropism testing. Lancet Infect Dis 2011; 11:394-407.
- 129. Seclén E, González MM, De Mendoza C, Soriano V, Poveda E. Dynamics of HIV tropism under suppressive antiretroviral therapy: implications for tropism testing in subjects with undetectable viraemia. J Antiomicrob Chemother 2010; 65:1493-1496.
- 130. Chueca N, Álvarez M, Peña A, López-Bueno J, Mérida MD, Guillot V, et al. Long term follow up of longitudinal plasma and proviral DNA coreceptor usage in HIV-1 patients under HAART. Program and Abstracts of the 10th European Meeting on HIV and Hepatitis Treatment Strategies and Antiviral Resistence; 2012. Barcelona, Spain; P-28.
- 131. Stekler J, Collier A. Treatment of primary HIV. Curr Infect Dis Rep 2002; 4:81-87.
- 132. Pilcher CD, Eron JJ, Jr., Galvin S, Gay C, Cohen MS. Acute HIV revisited: new opportunities for treatment and prevention. J Clin Invest 2004; 113:937-945.

- 133. Kassutto S, Rosenberg E. Primary HIV type 1 infection. Clin Infect Dis 2004; 38:1452-1458.
- 134. Weintrob AC, Giner J, Menezes P, Patrick E, Benjamin DK, Jr., Lennox J, et al. Infrequent diagnosis of primary human immunodeficiency virus infection: missed opportunities in acute care settings. Arch Intern Med 2003; 163:2097-2100.
- 135. Miro JM, Sued O, Plana M, Pumarola T, Gallart T. Avances en el diagnóstico y tratamiento de la infección aguda por el VIH-1. Enferm Infecc Microbiol Clin 2004; 22:643-659.
- 136. Cohen MS, Shaw GM, McMichael AJ, Haynes BF. Acute HIV-1 Infection. N Engl J Med 2011; 364:1943-1954.
- 137. Miro JM, Manzardo C, Zamora L, Pumarola T, Herreras Z, Gallart T et al. Manejo clínico de la infección aguda y crónica por el virus de la inmunodeficiencia humana antes del inicio del tratamiento antirretroviral. Enferm Infecc Microbiol Clin 2011; 29:759-772.
- 138. Lindback S, Thorstensson R, Karlsson AC, von Sydow M, Flamholc L, Blaxhult A, et al. Diagnosis of primary HIV-1 infection and duration of follow-up after HIV exposure. Karolinska Institute Primary HIV Infection Study Group. AIDS 2000; 14:2333-2339.
- 139. Daar ES, Little S, Pitt J, Santangelo J, Ho P, Harawa N, et al. Diagnosis of primary HIV-1 infection. Los Angeles County Primary HIV Infection Recruitment Network. Ann Intern Med 2001; 134:25-9.
- 140. Lavreys L, Baeten JM, Chohan V, McClelland RS, Hassan WM, Richardson BA et al. Higher set point plasma viral load and more-severe acute HIV type 1 (HIV-1) illness predict mortality among high-risk HIV-1-infected African women. Clin Infect Dis 2006; 42:1333-1339.
- 141. Goujard C, Bonarek M, Meyer L, Bonnet F, Chaix ML, Deveau C, et al. CD4 cell count and HIV DNA level are independent predictors of disease progression after primary HIV type 1 infection in untreated patients. Clin Infect Dis 2006; 42:709-715.
- 142. Socias ME, Sued O, Laufer N, Lazaro ME, Mingrone H, Pryluka D, et al. Acute retroviral syndrome and high baseline viral load are predictors of rapid HIV progression among untreated Argentinean seroconverters. J Int AIDS Soc 2011; 14:40.
- 143. Dalmau J, Puertas MC, Azuara M, Marino A, Frahm N, Mothe B et al. Contribution of immunological and virological factors to extremely severe primary HIV type 1 infection. Clin Infect Dis 2009; 48:229-238.

- 144. Goetz MB, Leduc R, Kostman JR, Labriola AM, Lie Y, Weidler J, et al. Relationship between HIV coreceptor tropism and disease progression in persons with untreated chronic HIV infection. J Acquir Immune Defic Syndr 2009; 50:259-266.
- 145. Markowitz M, Mohri H, Mehandru S, Shet A, Berry L, Kalyanaraman R, et al. Infection with multidrug resistant, dual-tropic HIV-1 and rapid progression to AIDS: a case report. Lancet 2005; 365:1031-1038.
- 146. Rotger M, Dalmau J, Rauch A, McLaren P, Bosinger SE, Martinez R, et al. Comparative transcriptomics of extreme phenotypes of human HIV-1 infection and SIV infection in sooty mangabey and rhesus macaque. J Clin Invest 2011; 121:2391-2400.
- 147. Gottlieb GS, Nickle DC, Jensen MA, Wong KG, Grobler J, Li F, et al. Dual HIV-1 infection associated with rapid disease progression. Lancet 2004; 363:619-622.
- 148. Fellay J, Shianna KV, Ge D, Colombo S, Ledergerber B, Weale M, et al. A whole-genome association study of major determinants for host control of HIV-1. Science 2007; 317:944-947.
- 149. Fellay J, Ge D, Shianna KV, Colombo S, Ledergerber B, Cirulli ET, et al. Common genetic variation and the control of HIV-1 in humans. PLoS Genet 2009; 5:e1000791.
- 150. Fidler S, Fox J, Porter K, Weber J. Primary HIV infection: to treat or not to treat? Curr Opin Infect Dis 2008; 21:4-10.
- 151. Rieder P, Joos B, von W, V, Kuster H, Grube C, Leemann C, et al. HIV-1 transmission after cessation of early antiretroviral therapy among men having sex with men. AIDS 2010; 24:1177-1183.
- 152. Cohen MS, Chen YQ, McCauley M, Gamble T, Hosseinipour MC, Kumarasamy N, et al. Prevention of HIV-1 infection with early antiretroviral therapy. N Engl J Med 2011; 365:493-505.
- 153. Fox J, White PJ, Macdonald N, Weber J, McClure M, Fidler S, et al. Reductions in HIV transmission risk behaviour following diagnosis of primary HIV infection: a cohort of high-risk men who have sex with men. HIV Med 2009; 10:432-438.
- 154. Altfeld M, Rosenberg ES, Shankarappa R, Mukherjee JS, Hecht FM, Eldridge RL, et al. Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J Exp Med 2001; 193:169-180.
- 155. Cohen DE, Walker BD. Human immunodeficiency virus pathogenesis and prospects for immune control in patients with established infection. Clin Infect Dis 2001; 32:1756-1768.

- 156. Oxenius A, Yerly S, Ramirez E, Phillips RE, Price DA, Perrin L. Distribution of functional HIV-specific CD8 T lymphocytes between blood and secondary lymphoid organs after 8-18 months of antiretroviral therapy in acutely infected patients. AIDS 2001; 15:1653-1656.
- 157. Oxenius A, Fidler S, Brady M, Dawson SJ, Ruth K, Easterbrook PJ, et al. Variable fate of virus-specific CD4(+) T cells during primary HIV-1 infection. Eur J Immunol 2001; 31:3782-3788.
- 158. Rosenberg ES, Altfeld M, Poon SH, Phillips MN, Wilkes BM, Eldridge RL, et al. Immune control of HIV-1 after early treatment of acute infection. Nature 2000; 407:523-526.
- 159. McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development. Nat Rev Immunol 2010; 10:11-23.
- 160. Mehandru S, Poles MA, Tenner-Racz K, Jean-Pierre P, Manuelli V, Lopez P, et al. Lack of mucosal immune reconstitution during prolonged treatment of acute and early HIV-1 infection. PLoS One 2006; 3:e484.
- 161. Smith DE, Walker BD, Cooper DA, Rosenberg ES, Kaldor JM. Is antiretroviral treatment of primary HIV infection clinically justified on the basis of current evidence? AIDS 2004; 18:709-718.
- 162. Kinloch de LS. Treatment of acute HIV-1 infection: is it coming of age? J Infect Dis 2006; 194:721-724.
- 163. O'Brien M, Markowitz M. Should we treat acute HIV infection? Curr HIV/AIDS Rep 2012; 9:101-110.
- 164. Voirin N, Routy JP, Smith D, Baratin D, Trepo C, Cotte L, et al. Effect of early initiation of highly active antiretroviral therapy on CD4 cell count and HIV-RNA viral load trends within 24 months of the onset of acute retroviral syndrome. HIV Med 2008; 9:440-444.
- 165. Kassutto S, Maghsoudi K, Johnston MN, Robbins GK, Burgett NC, Sax PE, et al. Longitudinal analysis of clinical markers following antiretroviral therapy initiated during acute or early HIV type 1 infection. Clin Infect Dis 2006; 42:1024-1031.
- 166. Sued O, Miro JM, Alquezar A, Claramonte X, Garcia F, Plana M, et al. Primary human immunodeficiency virus type 1 infection: clinical, virological and immunological characteristics of 75 patients (1997-2003). Enferm Infect Microbiol Clin 2006; 24:238-244.
- 167. Cellerai C, Harari A, Stauss H, Yerly S, Geretti AM, Carroll A, et al. Early and prolonged antiretroviral therapy is associated with an HIV-1-specific T-cell

- profile comparable to that of long-term non-progressors. PLoS One 2011; 6:e18164.
- 168. Le T, Wright EJ, Smith DM, He W, Catano G, Okulicz JF et al. Enhanced CD4+ T-cell recovery with earlier HIV-1 antiretroviral therapy. N Engl J Med 2013; 368:218-230.
- 169. Fidler S, Fraser C, Fox J, Tamm N, Griffin JT, Weber J. Comparative potency of three antiretroviral therapy regimes in primary HIV infection. AIDS 2006; 20:247-252.
- 170. Apuzzo LG, Vaida F, Gallant JE, Ernstrom KB, Little SJ, Routy JP, et al. Tolerability and efficacy of PI versus NNRTI-based regimens in subjects receiving HAART during acute or early HIV infection. J Acquir Immune Defic Syndr 2009; 50:267-275.
- 171. Lennox JL, DeJesus E, Lazzarin A, Pollard RB, Madruga JV, Berger DS, et al. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naive patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial. Lancet 2009; 374:796-806.
- 172. Markowitz M, Evering T, Caskey M, Figueroa A, Rodriguez K, La Mar M, et al. A randomized open-label trial of 5-drug vs 3-drug standard PI-based cART initiated during acute and early HIV-1 infection: 48-week results. Program and abstracts of the 18th Conference on Retroviruses and Opportunistic Infections (CROI). Boston, MA, February 27-March 2, 2011. Abstract 148LB.
- 173. Masanella M, Llibre JM, Puertas M, Perez-Alvarez N, Miro JM, Martinez-Picado J, et al. Immunological effects of treatment intensification with MVC in recently infected HIV-1-naive subjects starting RAL+TDF/FTC: The Maraviboost Study. Program and abstracts of the 18th Conference on Retroviruses and Opportunistic Infections (CROI). Boston, MA, February 27-March 2, 2011. Abstract No 547
- 174. Chaix ML, Descamps D, Wirden M, Bocket L, Delaugerre C, Tamalet C, et al. Stable frequency of HIV-1 transmitted drug resistance in patients at the time of primary infection over 1996-2006 in France. AIDS 2009; 23:717-724.
- 175. Romero A, Sued O, Puig T, Esteve A, Pumarola T, Casabona J, et al. Prevalence of transmitted antiretroviral resistance and distribution of HIV-1 subtypes among patients with recent infection in Catalonia (Spain) between 2003 and 2005. Enferm Infecc Microbiol Clin 2011; 29:482-489.
- 176. Goujard C, Boufassa F, Deveau C, Laskri D, Meyer L. Incidence of clinical lipodystrophy in HIV-infected patients treated during primary infection. AIDS 2001; 15:282-284.

- 177. Miller J, Carr A, Smith D, Emery S, Law MG, Grey P, et al. Lipodystrophy following antiretroviral therapy of primary HIV infection. AIDS 2000;14:2406-2407.
- 178. Narciso P, Tozzi V, D'Offizi G, De Carli G, Orchi N, Galati V, et al. Metabolic and morphologic disorders in patients treated with highly active antiretroviral therapy since primary HIV infection. Ann N Y Acad Sci 2001; 946:214-222.
- 179. Streeck H, Jessen H, Alter G, Teigen N, Waring MT, Jessen A, et al. Immunological and virological impact of highly active antiretroviral therapy initiated during acute HIV-1 infection. J Infect Dis 2006; 194:734-739.
- 180. Markowitz M, Jin X, Hurley A, Simon V, Ramratnam B, Louie M, et al. Discontinuation of antiretroviral therapy commenced early during the course of human immunodeficiency virus type 1 infection, with or without adjunctive vaccination. J Infect Dis 2002; 186:634-643.
- 181. Desquilbet L, Goujard C, Rouzioux C, Sinet M, Deveau C, Chaix ML, et al. Does transient HAART during primary HIV-1 infection lower the virological setpoint? AIDS 2004; 18:2361-2369.
- 182. Hecht FM, Wang L, Collier A, Little S, Markowitz M, Margolick J, et al. A multicenter observational study of the potential benefits of initiating combination antiretroviral therapy during acute HIV infection. J Infect Dis 2006; 194:725-733.
- 183. Steingrover R, Garcia EF, van Valkengoed IG, Bekker V, Bezemer D, Kroon FP, et al. Transient lowering of the viral set point after temporary antiretroviral therapy of primary HIV type infection. AIDS Res Hum Retroviruses 2010; 26:379-387.
- 184. Koegl C, Wolf E, Hanfoff N, Jessen H, Schewe K, Rausch M, et al. Treatment during primary HIV infection does not lower viral set point but improves CD4 lymphocytes in an observational cohort. Eur J Med Res 2009;14:277-283.
- 185. Seng R, Goujard C, Desquilbet L, Sinet M, Rouzioux C, Deveau C, et al. Rapid CD4+ cell decrease after transient cART initiated during primary HIV infection (ANRS PRIMO and SEROCO cohorts. J Acquir Immune Defic Syndr 2008; 49:251-258.
- 186. Lampe FC, Porter K, Kaldor J, Law M, Kinloch-de LS, Phillips AN. Effect of transient antiretroviral treatment during acute HIV infection: comparison of the Quest trial results with CASCADE natural history study. Antivir Ther 2007; 12:189-193.
- 187. Stekler JD, Wellman R, Holte S, Maenza J, Stevens CE, Corey L, Collier AC. Are there benefits to starting antiretroviral therapy during primary HIV infection? Conclusions from the Seattle Primary Infection Cohort vary by control group. Int J STD AIDS 2012; 23:201-206.

- 188. Hocqueloux L, Prazuck T, Avettand-Fenoel V, Lafeuillade A, Cardon B, Viard JP, Rouzioux C. Long-term immunovirologic control following antiretroviral therapy interruption in patients treated at the time of primary HIV-1 infection. AIDS 2010; 24:1598-1601.
- 189. Fox J, Scriba TJ, Robinson N, Weber JN, Phillips RE, Fidler S. Human immuno-deficiency virus (HIV)-specific T helper responses fail to predict CD4+ T cell decline following short-course treatment at primary HIV-1 infection. Clin Exp Immunol 2008; 152:532-537.
- 190. Pantazis N, Touloumi G, Vanhems P, Gill J, Bucher HC, Porter K. The effect of antiretroviral treatment of different durations in primary HIV infection. AIDS 2008; 22:2441-2450.
- 191. Lodi S, Meyer L, Kelleher AD, Rosinska M, Ghosn J, Sannes M, Porter K. Inmunovirologic control 24 months after interruption of antiretroviral therapy initiated closet o HIV seroconversion. Arch Intern Med 2012; 172: 1252-1255.
- 192. Goujard C, Girault I, Rouzioux C, Lécuroux C, Deveau C, Chaix ML, et al. HIV-1 control after transient antiretroviral treatment initiated in primary infection: role of patient characteristics and effect of therapy. Antivir Ther 2012; 17: 1001-1009.
- 193. The SPARTAC Trial Investigators, Fidler S, Porter K, Ewings S, Frater J, Ramjee J, et al. Short-Course Antiretroviral Therapy in Primary HIV Infection. N. Engl J Med. 2013; 368:207-217.
- 194. Grijsen ML, Steingrover R, Wit FW, Jurriaans S, Verbon A, Brinkman K, et al. No treatment versus 24 or 60 weeks of antiretroviral treatment during primary HIV infection: the randomized Primo-SHM trial. PLoS Med 2012; 9:e1001196.
- 195. Hogan CM, DeGruttola V, Sun X, Fiscus SA, Del RC, Hare CB, et al. The Setpoint Study (ACTG A5217): Effect of immediate versus deferred antiretroviral therapy on virologic set point in recently HIV-1-infected individuals. J Infect Dis 2012; 205:87-96.
- 196. Kaufmann DE, Lichterfeld M, Altfeld M, Addo MM, Johnston MN, Lee PK, et al. Limited durability of viral control following treated acute HIV infection. PLoS Med 2004; 1:e36.
- 197. Tremblay CL, Hicks JL, Sutton L, Giguel F, Flynn T, Johnston M, et al. Antiretroviral resistance associated with supervised treatment interruptions in treated acute HIV infection. AIDS 2003; 17:1086-1089.

- 198. Hoen B, Fournier I, Lacabaratz C, Burgard M, Charreau I, Chaix ML, et al. Structured treatment interruptions in primary HIV-1 infection: the ANRS 100 PRIMSTOP trial. J Acquir Immune Defic Syndr 2005; 40:307-316.
- 199. Emilie D, Burgard M, Lascoux Combre C, Lauglin M, Krzyiek R, Pignosn C, et al. Early control of HIV replication in primary HIV-Infection treated with antiretroviral drugs and pegylated IFN alpha: results from the Primoferon A (ANRS 086) Study. AIDS 2001; 15:1435-1437.
- 200. Goujard C, Emilie D, Roussillon C, Godot V, Rouzioux C, Venet A, et al. Continuous versus intermittent treatment strategies during primary HIV-1 infection: the randomized ANRS INTERPRIM Trial. AIDS 2012; 26:1895-1905.
- 201. Dybul M, Hidalgo B, Chun TW, Belson M, Migueles SA, Justement JS, et al. Pilot study of the effects of intermittent interleukin-2 on human immunodeficiency virus specific responses in patients treated during recently acquired HIV infection. J Infect Dis 2002; 185:61-68.
- 202. Adalid-Peralta L, Godot V, Colin C, Krzysiek R, Tran T, Poignard P, et al. Stimulation of the primary anti-HIV antibody response by IFN-alpha in patients with acute HIV-1 infection. J Leukoc Biol 2008; 83:1060-1067.
- 203. Ravot E, Tambussi G, Jessen H, Tinelli C, Lazzarin A, Lisziexicz J, et al. Effects of hidroxiurea on T cell count changes during primary HIV infection. AIDS 2000; 14:619-622.
- 204. Rizzardi GP, Harari A, Capiluppi B, Tambussi G, Ellfsen K, Ciuffreda D, et al. Treatment of primary HIV-1 infection with ciclosporin A coupled with HAART. J Clin Invest 2002; 109:681-688.
- 205. Markowitz M, Vaida F, Hare CB, Boden D, Mohri H, Hecht FM, et al. The virologic and inmunologic effects of cyclosporine as an adjunct to antiretroviral therapy in patients treated during acute and early HIV-infection. J Infect Dis 2010; 201:1298-1302.
- 206. Miro JM, Lopez-Dieguez M, Plana M, Pumarola T, Brunet M, Tuset M, et al. Randomized clinical trial with immune-based therapy in patients with primary HIV-1 infection. Program and abstracts of the 16th Conference on Retroviruses and Opportunistic Infections, Montreal, February 8-11 2009. Abstract 531
- 207. Shiver JW, Fu TM, Chen L, Casimiro DR, Davies ME, Evans RK, et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 2002; 415:331-335.
- 208. Lu W, Wu X, Lu Y, Guo W, Andrieu JM. Therapeutic dendritic-cell vaccine for simian AIDS. Nat Med 2003; 9:27-32.
- 209. Kinloch-de LS, Hoen B, Smith DE, Autran B, Lampe FC, Phillips AN, et al. Impact of therapeutic immunization on HIV-1 viremia after discontinuation of

- antiretroviral therapy initiated during acute infection. J Infect Dis 2005; 192:607-617.
- 210. Emery S, Workman C, Puls RL, Bloch M, Baker D, Bodsworth N, et al. Randomized, placebo-controlled, phase I/IIa evaluation of the safety and immunogenicity of fowlpox virus expressing HIV gag-pol and interferon-gamma in HIV-1 infected subjects. Hum Vaccin 2005; 1:232-238.
- 211. Rosenberg ES, Graham BS, Chan ES, Bosch RJ, Stocker V, Maenza J, et al. Safety and immunogenicity of therapeutic DNA vaccination in individuals treated with antiretroviral therapy during acute/early HIV-1 infection. PLoS One 2010; 5:e10555.
- 212. Rerks-Ngarm S, Paris RM, Chunsutthiwat S, Premsri N, Namwat C, Bowonwatanuwong C, et al. Extended evaluation of the virologic, immunologic, and clinical course of volunteers who acquired HIV-1 infection in a phase III vaccine trial of ALVAC-HIV and AIDSVAX B/E. J Infect Dis 2012 Sep 12. Epub ahead of print.
- 213. International AIDS Society Scientific Working Group on HIV Cure, Deeks SG, Autran B, Berkhout B, Benkirane M, Cairns S, et al. Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 2012; 12:607-614.
- 214. Autran B, Carcelain G, Li TS, Blanc C, Mathez D, Tubiana R et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 1997; 277:112-116.
- 215. Paul S, Gilbert HM, Ziecheck W, Jacobs J, Sepkowitz KA. The impact of potent antiretroviral therapy on the characteristics of hospitalized patients with HIV infection. AIDS 1999; 13:415-418.
- 216. Mocroft A, Vella S, Benfield TL, Chiesi A, Miller V, Gargalianos P et al. Changing patterns of mortality across Europe in patients infected with HIV-1. Euro-SIDA Study Group. Lancet 1998; 352:1725-1730.
- 217. Lampe FC, Gatell JM, Staszewski S, Johnson MA, Pradier C, Gill MJ et al. Changes over time in risk of initial virological failure of combination antiretroviral therapy: a multicohort analysis, 1996 to 2002. Arch Intern Med 2006; 166:521-528.
- 218. The Antiretroviral Therapy Cohort Collaboration. Life expectancy of individuals on combination antiretroviral therapy in high-income countries: a collaborative analysis of 14 cohort studies. Lancet 2008; 372:293-299.
- 219. Lewden C, Chene G, Morlat P, Raffi F, Dupon M, Dellamonica P et al. HIV-infected adults with a CD4 cell count greater than 500 cells/mm3 on long-term combination antiretroviral therapy reach same mortality rates as the general population. J Acquir Immune Defic Syndr 2007; 46:72-77.

- 220. Marschner IC, Collier AC, Coombs RW, D'Aquila RT, DeGruttola V, Fischl MA et al. Use of changes in plasma levels of human immunodeficiency virus type 1 RNA to assess the clinical benefit of antiretroviral therapy. J Infect Dis 1998; 177:40-47.
- 221. Mellors JW, Munoz A, Giorgi JV, Margolick JB, Tassoni CJ, Gupta P et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. Ann Intern Med 1997; 126:946-954.
- 222. Emery S, Neuhaus JA, Phillips AN, Babiker A, Cohen CJ, Gatell JM et al. Major clinical outcomes in antiretroviral therapy (ART)-naive participants and in those not receiving ART at baseline in the SMART study. J Infect Dis 2008; 197:1133-1144.
- 223. Severe P, Juste MA, Ambroise A, Eliacin L, Marchand C, Apollon S et al. Early versus standard antiretroviral therapy for HIV-infected adults in Haiti. N Engl J Med 2010; 363:257-265.
- 224. Kitahata MM, Gange SJ, Abraham AG, Merriman B, Saag MS, Justice AC et al. Effect of early versus deferred antiretroviral therapy for HIV on survival. N Engl J Med 2009; 360:1815-1826.
- 225. Baker JV, Peng G, Rapkin J, Abrams DI, Silverberg MJ, MacArthur RD et al. CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection. AIDS 2008; 22:841-848.
- 226. Monforte A, Abrams D, Pradier C, Weber R, Reiss P, Bonnet F et al. HIV-induced immunodeficiency and mortality from AIDS-defining and non-AIDS-defining malignancies. AIDS 2008; 22:2143-2153.
- 227. Marin B, Thiebaut R, Bucher HC, Rondeau V, Costagliola D, Dorrucci M et al. Non-AIDS-defining deaths and immunodeficiency in the era of combination antiretroviral therapy. AIDS 2009; 23:1743-1753.
- 228. El-Sadr WM, Lundgren JD, Neaton JD, Gordin F, Abrams D, Arduino RC et al. CD4+ count-guided interruption of antiretroviral treatment. N Engl J Med 2006; 355:2283-2296.
- 229. Bhaskaran K, Hamouda O, Sannes M, Boufassa F, Johnson AM, Lambert PC et al. Changes in the risk of death after HIV seroconversion compared with mortality in the general population. JAMA 2008;300(1):51-59.
- 230. May M, Sterne JA, Sabin C, Costagliola D, Justice AC, Thiebaut R et al. Prognosis of HIV-1-infected patients up to 5 years after initiation of HAART: collaborative analysis of prospective studies. AIDS 2007; 21:1185-1197.
- 231. Berenguer J, Alejos B, Hernando V, Viciana P, Oteo JA, Gómez Sirvent JL, et al. Temporal trends in liver-related mortality in a prospective cohort of HIV-infected patients in Spain 1997-2008. Program and abstracts of the 6th IAS

- Conference on HIV Pathogenesis, Treatment and Prevention, Rome 17-20 July 2011 Abstract WEAB0101.
- 232. Brañas F, Berenguer J, Sanchez-Conde M, Lopez-Bernaldo de Quiros JC, Miralles P, Cosin J, et al. The eldest of older adults living with HIV: response and adherence to highly active antiretroviral therapy. Am J Med 2008; 121:820-824.
- 233. Moore DM, Hogg RS, Yip B, Craib K, Wood E, Montaner JS. CD4 percentage is an independent predictor of survival in patients starting antiretroviral therapy with absolute CD4 cell counts between 200 and 350 cells/microL. HIV Med 2006; 7:383-388.
- 234. Gras L, Kesselring AM, Griffin JT, van Sighem AI, Fraser C, Ghani AC et al. CD4 cell counts of 800 cells/mm3 or greater after 7 years of highly active antiretroviral therapy are feasible in most patients starting with 350 cells/mm3 or greater. J Acquir Immune Defic Syndr 2007; 45:183-192.
- 235. Mocroft A, Phillips AN, Gatell J, Ledergerber B, Fisher M, Clumeck N et al. Normalisation of CD4 counts in patients with HIV-1 infection and maximum virological suppression who are taking combination antiretroviral therapy: an observational cohort study. Lancet 2007; 370:407-413.
- 236. Lichtenstein KA, Armon C, Buchacz K, Chmiel JS, Moorman AC, Wood KC et al. Initiation of antiretroviral therapy at CD4 cell counts >/=350 cells/mm3 does not increase incidence or risk of peripheral neuropathy, anemia, or renal insufficiency. J Acquir Immune Defic Syndr 2008; 47:27-35.
- 237. Bartlett JA, Fath MJ, DeMasi R, Hermes A, Quinn J, Mondou E et al. An updated systematic overview of triple combination therapy in antiretroviral-naive HIV-infected adults. AIDS 2006; 20:2051-2064.
- 238. Gatell Artigas JM. Guía práctica del sida clínica, diagnóstico y tratamiento. [Molins de Rey, Barcelona]: Antares; 2011.
- 239. Coffey S, Peipert L. Antiretroviral drug profiles. HIV Knowledge Base Disponible en: http://hivinsite ucsf edu/InSite?page=ar-drugs 2011; (Acceso 15.12.2012).
- 240. León A, Martinez E, Mallolas J, Laguno M, Blanco JL, Pumarola T, et al. Early virological failure in treatment-naive HIV-infected adults receiving didanosine and tenofovir plus efavirenz or nevirapine. AIDS 2005; 19:213-215.
- 241. Martinez E, Milinkovic A, de Lazzari E, Ravasi G, Blanco JL, Larrousse M, et al. Pancreatic toxic effects associated with the co-administration of didanosine and tenofovir in HIV-infected adults. Lancet 2004; 364:65-67.

- 242. Podzamczer D, Ferrer E, Gatell JM, Niubo J, Dalmau D, León A, et al. Early virological failure with a combination of tenofovir, didanosine and efavirenz. Antivir Ther 2005; 10:171-177.
- 243. Gallant JE, Staszewski S, Pozniak AL, DeJesus E, Suleiman JM, Miller MD, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 2004; 292:191-201.
- 244. Arribas JR, Pozniak AL, Gallant JE, DeJesus E, Gazzard B, Campo RE, et al. Tenofovir disoproxil fumarate, emtricitabine, and efavirenz compared with zidovudine/lamivudine and efavirenz in treatment-naive patients: 144-week analysis. J Acquir Immune Defic Syndr 2008; 47:74-78.
- 245. DeJesus E, Herrera G, Teofilo E, Gerstoft J, Buendia CB, Brand JD, et al. Abacavir versus zidovudine combined with lamivudine and efavirenz, for the treatment of antiretroviral-naive HIV-infected adults. Clin Infect Dis 2004; 39:1038-1046.
- 246. Moyle GJ, DeJesus E, Cahn P, Castillo SA, Zhao H, Gordon DN, et al. Abacavir once or twice daily combined with once-daily lamivudine and efavirenz for the treatment of antiretroviral-naive HIV-infected adults: results of the Ziagen Once Daily in Antiretroviral Combination Study. J Acquir Immune Defic Syndr 2005; 38:417-425.
- 247. Podzamczer D, Ferrer E, Sanchez P, Gatell JM, Crespo M, Fisac C, et al. Less lipoatrophy and better lipid profile with abacavir as compared to stavudine: 96-week results of a randomized study. J Acquir Immune Defic Syndr 2007; 44:139-147.
- 248. Smith KY, Patel P, Fine D, Bellos N, Sloan L, Lackey P, et al. Randomized, double-blind, placebo-matched, multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir for initial HIV treatment. AIDS 2009; 23:1547-1556.
- 249. Sax PE, Tierney C, Collier AC, Fischl MA, Mollan K, Peeples L, et al. Abacavirlamivudine versus tenofovir-emtricitabine for initial HIV-1 therapy. N Engl J Med 2009; 361:2230-2240.
- 250. Sax PE, Tierney C, Collier AC, Daar ES, Mollan K, Budhathoki C, et al. Abacavir/lamivudine versus tenofovir DF/emtricitabine as part of combination regimens for initial treatment of HIV: final results. J Infect Dis 2011; 204:1191-1201.
- 251. Daar ES, Tierney C, Fischl MA, Sax PE, Mollan K, Budhathoki C, et al. Atazanavir plus ritonavir or efavirenz as part of a 3-drug regimen for initial treatment of HIV-1. Ann Intern Med 2011; 154:445-456.

- 252. Post FA, Moyle GJ, Stellbrink HJ, Domingo P, Podzamczer D, Fisher M, et al. Randomized comparison of renal effects, efficacy, and safety with once-daily abacavir/lamivudine versus tenofovir/emtricitabine, administered with efavirenz, in antiretroviral-naive, HIV-1-infected adults: 48-week results from the ASSERT study. J Acquir Immune Defic Syndr 2010; 55:49-57.
- 253. Hill A, Sawyer W. Effects of nucleoside reverse transcriptase inhibitor backbone on the efficacy of first-line boosted highly active antiretroviral therapy based on protease inhibitors: meta-regression analysis of 12 clinical trials in 5168 patients. HIV Med 2009; 10:527-535.
- 254. Hetherington S, McGuirk S, Powell G, Cutrell A, Naderer O, Spreen B, et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin Ther 2001; 23:1603-1614.
- 255. Sabin CA, Worm SW, Weber R, Reiss P, El-Sadr W, Dabis F, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study: a multi-cohort collaboration. Lancet 2008; 371:1417-1426.
- 256. The SMART-INSIGHT and the D:A:D Study Groups. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients. AIDS 2008; 22:F17-F24.
- 257. Obel N, Farkas DK, Kronborg G, Larsen CS, Pedersen G, Riis A, et al. Abacavir and risk of myocardial infarction in HIV-infected patients on highly active antiretroviral therapy: a population-based nationwide cohort study. HIV Med 2010; 11:130-136.
- 258. Lang S, Mary-Krause M, Cotte L, Gilquin J, Partisani M, Simon A, et al. Impact of individual antiretroviral drugs on the risk of myocardial infarction in human immunodeficiency virus-infected patients: a case-control study nested within the French Hospital Database on HIV ANRS cohort CO4. Arch Intern Med 2010; 170:1228-1238.
- 259. Ding X, Andraca-Carrera E, Cooper C, Miele P, Kornegay C, Soukup M et al. No association of myocardial infarction with ABC use: An FDA meta-analysis. J Acquir Immun Defic Syndr 2012; 61:441-447.
- 260. Brothers CH, Hernández JE, Cutrell AG, Curtis L, it-Khaled M, Bowlin SJ, et al. Risk of myocardial infarction and abacavir therapy: no increased risk across 52 GlaxoSmithKline-sponsored clinical trials in adult subjects. J Acquir Immune Defic Syndr 2009; 51:20-28.
- 261. Cruciani M, Zanichelli V, Serpelloni G, Bosco O, Malena M, Mazzi R, et al. Abacavir use and cardiovascular disease events: a meta-analysis of published and unpublished data. AIDS 2011; 25:1993-2004.

- 262. Ribaudo HJ, Benson CA, Zheng Y, Koletar SL, Collier AC, Lok JJ, et al. No risk of myocardial infarction associated with initial antiretroviral treatment containing abacavir: short and long-term results from ACTG A5001/ALLRT. Clin Infect Dis 2011; 52:929-940.
- 263. Robbins GK, De Gruttola V, Shafer RW, Smeaton LM, Snyder SW, Pettinelli C, et al. Comparison of secuential three-drug regimens as inicial therapy for HIV-1 infection. N Engl J Med 2003;349:2293-2303.
- 264. Shafer RW, Smeaton MS, Robbins GK, De Gruttola V, Snyder SW, D' Aquila RT, et al. Comparison of four-drug regimens and pairs of sequential three-drugs regimens as inicial therapy for HIV-1 infection. N Engl J Med 2003;349:2304-2315.
- 265. Berenguer J, González J, Ribera E, Domingo P, Santos J, Miralles P, et al. Didanosine, lamivudine, and efavirenz versus zidovudine, lamivudine, and efavirenz for the initial treatment of HIV type 1 infection: final analysis (48 weeks) of a prospective, randomized, noninferiority clinical trial, GESIDA 3903. Clin Infect Dis 2008; 47:1083-1092.
- 266. Eron J, Jr., Yeni P, Gathe J, Jr., Estrada V, DeJesus E, Staszewski S, et al. The KLEAN study of fosamprenavir-ritonavir versus lopinavir-ritonavir, each in combination with abacavir-lamivudine, for initial treatment of HIV infection over 48 weeks: a randomised non-inferiority trial. Lancet 2006; 368:476-482.
- 267. Hicks CB, DeJesus E, Sloan LM, Sension MG, Wohl DA, Liao Q, et al. Comparison of once-daily fosamprenavir boosted with either 100 or 200 mg of ritonavir, in combination with abacavir/lamivudine: 96-week results from COL100758. AIDS Res Hum Retroviruses 2009; 25:395-403.
- 268. Elion R, DeJesus E, Sension M, Berger D, Towner W, Richmond G, et al. Once-daily abacavir/lamivudine and ritonavir-boosted atazanavir for the treatment of HIV-1 infection in antiretroviral-naive patients: a 48-week pilot study. HIV Clin Trials 2008; 9:152-163.
- 269. Gulick RM, Ribaudo HJ, Shikuma CM, Lustgarten S, Squires KE, Meyer III WA, et al. Triple-Nucleoside Regimens versus Efavirenz-Containing Regimens for the Initial Treatment of HIV-1 Infection. N Engl J Med 2004; 350:1850-1861.
- 270. Gulick RM, Ribaudo HJ, Shikuma CM, Lalama C, Schackman BR, Meyer WA, III et al. Three- vs four-drug antiretroviral regimens for the initial treatment of HIV-1 infection: a randomized controlled trial. JAMA 2006; 296:769-781.
- 271. Staszewski S, Keiser P, Montaner J, Raffi F, Gathe J, Brotas V, et al. Abacavirlamivudine-zidovudine vs. indinavirlamivudine-zidovudine in antiretroviralnaive HIV-infected adults: A randomized equivalence trial. JAMA 2001; 285:1155-63.

- 272. Ferrer E, Gatell JM, Sánchez P, Domingo P, Puig T, Niubo J, et al. Zidovu-dine/lamivudine/abacavir plus tenofovir in HIV-infected naive patients: a 96-week prospective one-arm pilot study. AIDS Res Hum Retroviruses 2008; 24:931-934.
- 273. Moyle G, Higgs C, Teague A, Mandalia S, Nelson M, Johnson M, et al. An open-label, randomized comparative pilot study of a single-class quadruple therapy regimen versus a 2-class triple therapy regimen for individuals initiating antiretroviral therapy. Antivir Ther 2006; 11:73-78.
- 274. Bartlett JA, Johnson J, Herrera G, Sosa N, Rodriguez A, Liao Q, et al. Long-term results of initial therapy with abacavir and Lamivudine combined with Efavirenz, Amprenavir/Ritonavir, or Stavudine. J Acquir Immune Defic Syndr 2006; 43:284-292.
- 275. Gallant JE, Rodriguez AE, Weinberg WG, Young B, Berger DS, Lim ML, et al. Early virologic nonresponse to tenofovir, abacavir, and lamivudine in HIV-infected antiretroviral-naive subjects. J Infect Dis 2005; 192:1921-1930.
- 276. Gerstoft J, Kirk O, Obel N, Pedersen C, Mathiesen L, Nielsen H. Low efficacy and high frequency of adverse events in a randomized trial of the triple NRTI regimen abacavir, stavudine and didanosine. AIDS 2003; 17:2045-2052.
- 277. Soriano V, Arasteh K, Migrone H, Lutz T, Opravil M, Andrade-Villanueva J et al. Nevirapine versus atazanavir/ritonavir, each combined with tenofovir disoproxil fumarate/emtricitabine, in antiretroviral-naive HIV-1 patients: the ARTEN Trial. Antivir Ther 2011; 16:339-348.
- 278. Lockman S, Hughes MD, McIntyre J, Zheng Y, Chipato T, Conradie F et al. Antiretroviral therapies in women after single-dose nevirapine exposure. N Engl J Med 2010; 363:1499-1509.
- 279. Lockman S, Hughes M, Sawe F, Zheng Y, McIntyre J, Chipato T, et al. Nevirapine-versus lopinavir/ritonavir-based initial therapy for HIV-1 infection among women in Africa: a randomized trial. PLoS Med 2012; 9:e1001236.
- 280. Podzamczer D, Ferrer E, Consiglio E, Gatell JM, Perez P, Perez JL, et al. A randomized clinical trial comparing nelfinavir or nevirapine associated to zidovudine/lamivudine in HIV-infected naive patients (the Combine Study). Antivir Ther 2002; 7:81-90.
- 281. Raffi F, Reliquet V, Podzamczer D, Pollard RB. Efficacy of nevirapine-based HAART in HIV-1-infected, treatment-naive persons with high and low baseline viral loads. HIV Clin Trials 2001; 2:317-322.
- 282. Riddler SA, Haubrich R, DiRienzo AG, Peeples L, Powderly WG, Klingman KL, et al. Class-sparing regimens for initial treatment of HIV-1 infection. N Engl J Med 2008; 358:2095-2106.

- 283. Staszewski S, Morales-Ramirez J, Tashima KT, Rachlis A, Skiest D, Stanford J, et al. Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. N Engl J Med 1999; 341:1865-73.
- 284. Montaner JS, Schutz M, Schwartz R, Jayaweera DT, Burnside AF, Walmsley S, et al. Efficacy, safety and pharmacokinetics of once-daily saquinavir soft-gelatin capsule/ritonavir in antiretroviral-naive, HIV-infected patients. MedGenMed 2006; 8:36.
- 285. Squires K, Lazzarin A, Gatell JM, Powderly WG, Pokrovskiy V, Delfraissy JF, et al. Comparison of once-daily atazanavir with efavirenz, each in combination with fixed-dose zidovudine and lamivudine, as initial therapy for patients infected with HIV. J Acquir Immune Defic Syndr 2004; 36:1011-1019.
- 286. Gazzard B, Duvivier C, Zagler C, Castagna A, Hill A, van DY, et al. Phase 2 double-blind, randomized trial of etravirine versus efavirenz in treatment-naive patients: 48-week results. AIDS 2011; 25:2249-2258.
- 287. Sax PE, DeJesus E, Mills A, Zolopa A, Cohen C, Wohl D, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. Lancet 2012; 379:2439-2448.
- 288. Walmsley S, Antela A, Clumeck N, et al. Dolutegravir + abacavir/lamivudine once daily statistically superior to tenofovir/emtricitabine/efavirenz: 48-week results SINGLE. Program and Abstracts of the 52nd Interscience Conference on Antimicrobial Agents and Chemotherapy; September 9-12, 2012; San Francisco, California. Abstract H-556b.
- 289. Van Leth F, Phanuphak P, Ruxrungtham K, Baraldi E, Miller S, Gazzard B, et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: a randomised open-label trial, the 2NN Study. Lancet 2004; 363:1253-1263.
- 290. Pulido F, Arribas JR, Miro JM, Costa MA, González J, Rubio R, et al. Clinical, virologic, and immunologic response to efavirenz or protease inhibitor based highly active antiretroviral therapy in a cohort of antiretroviral-naive patients with advanced HIV infection (EfaVIP 2 Study). J Acquir Immune Defic Syndr 2004; 35:343-350.
- 291. Sierra-Madero J, Villasis-Keever A, Mendez P, Mosqueda-Gomez JL, Torres-Escobar I, Gutierrez-Escolano F, et al. Prospective, randomized, open label trial of Efavirenz vs Lopinavir/Ritonavir in HIV+ treatment-naive subjects with CD4+<200 cell/mm3 in Mexico. J Acquir Immune Defic Syndr 2010; 53:582-588.

- 292. Molina JM, Cahn P, Grinsztejn B, Lazzarin A, Mills A, Saag M, et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naive adults infected with HIV-1 (ECHO): A phase 3 randomised double-blind active-controlled trial. Lancet 2011; 378:238-246.
- 293. Cohen CJ, Andrade-Villanueva J, Clotet B, Fourie J, Johnson MA, Ruxrungtham K, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naive adults infected with HIV-1 (THRIVE): a phase 3, randomised, non-inferiority trial. Lancet 2011; 378:229-237.
- 294. Cohen CJ, Molina JM, Cahn P, Clotet B, Fourie J, Grinsztejn B, et al. Efficacy and safety of rilpivirine (TMC278) versus efavirenz at 48 weeks in treatment-naive HIV-1-infected patients: pooled results from the phase 3 double-blind randomized ECHO and THRIVE trials. J Acquir Immune Defic Syndr 2012; 60:33-42.
- 295. Rimsky L, Vingerhoets J, Van Eygen V, Eron J, Clotet B, Hoogstoel A, et al. Genotypic and phenotypic characterization of HIV-1 isolates obtained from patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE studies: 48-week analysis. J Acquir Immune Defic Syndr 2012; 59:39-46.
- 296. Cohen C, Wohl D, Arribas J, Henry K, van Lunzen J, Bloch M, et al. STAR Study: single tablet regimen emtricitabine/rilpivirine/tenofovir DF is non-inferior to efavirenz/emtricitabine /tenofovir DF in ART-naive adults. Program and abstracts of the 11th International Congress on Drug Therapy in HIV Infection (HIV11); Glasgow, UK; November 11-15, 2012. Abstract O425.
- 297. Walmsley S, Bernstein B, King M, Arribas J, Beall G, Ruane P, et al. Lopinavirritonavir versus nelfinavir for the initial treatment of HIV infection. N Engl J Med 2002; 346:2039-2046.
- 298. Gathe J, da Silva BA, Cohen DE, Loutfy MR, Podzamczer D, Rubio R, et al. A once-daily lopinavir/ritonavir-based regimen is noninferior to twice-daily dosing and results in similar safety and tolerability in antiretroviral-naive subjects through 48 weeks. J Acquir Immune Defic Syndr 2009; 50:474-481.
- 299. Rodriguez-French A, Boghossian J, Gray GE, Nadler JP, Quinones AR, Sepulveda GE, et al. The NEAT Study: A 48-week open-label study to compare the antiviral efficacy and safety of GW433908 versus nelfinavir in antiretroviral therapy naïve HIV-1-infected patients. J Acquir Immune Defic Syndr 2004; 35:22-32.
- 300. Gathe JC, Ive P, Wood R, Schurmann D, Bellos NC, DeJesus E, et al. SOLO: 48-week efficacy and safety comparison of once-daily fosamprenavir /ritonavir versus twice-daily nelfinavir in naive HIV-1-infected patients. AIDS 2004; 18:1529-1537.

- 301. Hicks CB, DeJesus E, Sloan LM, Sension MG, Wohl DA, Liao Q, et al. Comparison of once-daily fosamprenavir boosted with either 100 or 200 mg of ritonavir, in combination with abacavir/lamivudine: 96-week results from COL100758. AIDS Res Hum Retroviruses 2009;25:395-403.
- 302. Ruane PJ, Luber AD, Wire MB, Lou Y, Shelton MJ, Lancaster CT, et al. Plasma amprenavir pharmacokinetics and tolerability following administration of 1,400 milligrams of fosamprenavir once daily in combination with either 100 or 200 milligrams of ritonavir in healthy volunteers. Antimicrob Agents Chemother 2007; 51:560-565.
- 303. Ortiz R, DeJesus E, Khanlou H, Voronin E, van Lunzen J, Andrade-Villanueva J, et al. Efficacy and safety of once-daily darunavir/ritonavir versus lop-inavir/ritonavir in treatment-naive HIV-1-infected patients at week 48. AIDS 2008; 22:1389-1397.
- 304. Mills AM, Nelson M, Jayaweera D, Ruxrungtham K, Cassetti I, Girard PM, et al. Once-daily darunavir/ritonavir vs. lopinavir/ritonavir in treatment-naive, HIV-1-infected patients: 96-week analysis. AIDS 2009; 23:1679-1688.
- 305. Orkin C, DeJesus E, Khanlou H, Stoehr A, Supparatpinyo K, Van de Casteele T et al. Final 192-week efficacy and safety of once-daily darunavir/ritonavir compared with lopinavir/ritonavir in HIV-1-infected treatment-naïve patients in the ARTEMIS trial. HIV Trial 2013;14:49-59.
- 306. Walmsley S, Avihingsanon A, Slim J, Ward DJ, Ruxrungtham K, Brunetta J, et al. Gemini: a noninferiority study of saquinavir/ritonavir versus lop-inavir/ritonavir as initial HIV-1 therapy in adults. J Acquir Immune Defic Syndr 2009; 50:367-374.
- 307. Malan DR, Krantz E, David N, Wirtz V, Hammond J, McGrath D. Efficacy and safety of atazanavir, with or without ritonavir, as part of once-daily highly active antiretroviral therapy regimens in antiretroviral-naive patients. J Acquir Immune Defic Syndr 2008; 47:161-167.
- 308. Molina JM, Andrade-Villanueva J, Echevarria J, Chetchotisakd P, Corral J, David N, et al. Once-daily atazanavir/ritonavir versus twice-daily lop-inavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 48 week efficacy and safety results of the CASTLE study. Lancet 2008; 372:646-655.
- 309. Molina JM, Andrade-Villanueva J, Echevarria J, Chetchotisakd P, Corral J, David N, et al. Once-daily atazanavir/ritonavir compared with twice-daily lop-inavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naive HIV-1-infected patients: 96-week efficacy and safety results of the CASTLE study. J Acquir Immune Defic Syndr 2010; 53:323-332.

- 310. DeJesus E, Rockstroh JK, Henry K, Molina JM, Gathe J, Ramanathan S, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3, non-inferiority trial. Lancet 2012; 379:2429-2438.
- 311. Gallant J, Koenig E, Andrade-Villanueva J, Chetchotisakd P, DeJesus E, Antunes F, et al. Cobicistat versus ritonavir as pharmacoenhancers in combination with atazanavir plus tenofovir disoproxil fumarate/emtricitabine: phase 3 randomized, double blind, active-controlled trial, week 48 results. Program and abstracts of the 19nd International AIDS Conference; July 22-27, 2012; Washington, DC. Abstract TUAB0103.
- 312. Cooper DA, Heera J, Goodrich J, Tawadrous M, Saag M, DeJesus E, et al. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naive subjects with CCR5-tropic HIV-1 infection. J Infect Dis 2010; 201:803-813.
- 313. Sierra-Madero J, Di Perri G, Wood R, Saag M, Frank I, Craig C, et al. Efficacy and safety of maraviroc versus efavirenz, both with zidovudine/lamivudine: 96-week results from the MERIT study. HIV Clin Trials 2010; 11:125-132.
- 314. Rockstroh J, DeJesus E, Saag M, Yazdanpanah Y, Lennox J, Wan H, et al. Longterm safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naïve HIV-1 infected patients: Final 5-year double-blind results from STARTMRK. Program and abstracts of the 19nd International AIDS Conference. July 22-27, 2012; Washington DC, USA. Abstract LBPE19.
- 315. Eron JJ Jr, Rockstroh JK, Reynes J, Andrade-Villanueva J, Ramalho-Madruga JV, Bekker LG, et al. Raltegravir once daily or twice daily in previously untreated patients with HIV-1: a randomised, active-controlled, phase 3 non-inferiority trial. Lancet Infect Dis 2011;11:907-915.
- 316. Raffi F, Rachlis A, Stellbrink H, Hardy D, Torti C, Orkin C, et al. Once-daily Dolutegravir (DTG; S/GSK1349572) is non-inferior to raltegravir (RAL) in antiretroviral □naive adults. 48 week results from SPRING-2 (ING113086). Program and abstracts of the 19nd International AIDS Conference. July 22-27, 2012; Washington DC, USA. Abstract THLBB04.
- 317. Delfraissy JF, Flandre P, Delaugerre C, Ghosn J, Horban A, Girard PM, et al. Lopinavir/ritonavir monotherapy or plus zidovudine and lamivudine in antiretroviral-naive HIV-infected patients. AIDS 2008; 22:385-393.
- 318. Kozal MJ, Lupo S, DeJesus E, Molina JM, McDonald C, Raffi F, et al. A nucleoside- and ritonavir-sparing regimen containing atazanavir plus raltegravir in antiretroviral treatment-naïve HIV-infected patients: SPARTAN study results. HIV Clin Trials 2012; 13:119-130.

- 319. Reynes J, Lawal A, Pulido F, Soto-Malave R, Gathe J, Tian M, et al. Examination of noninferiority, safety, and tolerability of lopinavir/ritonavir and raltegravir compared with lopinavir/ritonavir and tenofovir/ emtricitabine in antiretroviral-naive subjects: the progress study, 48-week results. HIV Clin Trials 2011; 12:255-267.
- 320. Taiwo B, Zheng L, Gallien S, Matining RM, Kuritzkes DR, Wilson CC, et al. Efficacy of a nucleoside-sparing regimen of darunavir/ritonavir plus raltegravir in treatment-naive HIV-1-infected patients (ACTG A5262). AIDS 2011; 25:2113-2122.
- 321. Mills A, Mildvan D, Podzamcer D, Fälkenheuer G, Leal M, Than S, et al. Safety and immunovirological activity of once daily maraviroc in combination with ritonavir-boosted atazanavir compared to emtricitabine 200mg/tenofovir 300mg QD (TDF/FTC) + ATV/r in treatment-naïve patients infected with CCR5-tropic HIV-1 (Study A4001078): A week 24 planned interim analysis. 18th International AIDS Conference, Vienna, July 18-23 2010. Abstract THLBB203
- 322. Nozza S, Galli L, Chiappetta S, Antinori A, Tommasi C, Di Pietro M, et al. Maraviroc 150 mg QD plus lopinavir/ritonavir, a NRTI-sparing regimen for HIV-infected naïve patients: 48-weeks final results. J Int AIDS Soc 2012; 15:18232.
- 323. Zolopa A, Andersen J, Powderly W, Sanchez A, Sanne I, Suckow C, et al. Early antiretroviral therapy reduces AIDS progression/death in individuals with acute opportunistic infections: a multicenter randomized strategy trial. PLoS One 2009; 4:e5575.
- 324. Torok ME, Yen NT, Chau TT, Mai NT, Phu NH, Mai PP, et al. Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)--associated tuberculous meningitis. Clin Infect Dis 2011; 52:1374-1383.
- 325. Makadzange AT, Ndhlovu CE, Takarinda K, Reid M, Kurangwa M, Gona P, et al. Early versus delayed initiation of antiretroviral therapy for concurrent HIV infection and cryptococcal meningitis in sub-saharan Africa. Clin Infect Dis 2010; 50:1532-1538.
- 326. Pulido F, Arribas JR, Delgado R, Cabrero E, Gonzalez-Garcia J, Perez-Elias, MJ et al. Lopinavir-ritonavir monotherapy versus lopinavir-ritonavir and two nucleosides for maintenance therapy of HIV. AIDS 2008; 22:F1-F9.
- 327. Cameron DW, da Silva BA, Arribas JR, Myers RA, Bellos NC, Gilmore N, et al. A 96-week comparison of lopinavir-ritonavir combination therapy followed by lopinavir-ritonavir monotherapy versus efavirenz combination therapy. J Infect Dis 2008; 198:234-240.
- 328. Nunes EP, Santini de OM, Mercon M, Zajdenverg R, Faulhaber JC, Pilotto JH, et al. Monotherapy with Lopinavir/ritonavir as maintenance after HIV-1 viral suppression: results of a 96-week randomized, controlled, open-label, pilot trial (KalMo study). HIV Clin Trials 2009; 10:368-374.

- 329. Gutmann C, Cusini A, Gunthard HF, Fux C, Hirschel B, Decosterd LA, et al. Randomized controlled study demonstrating failure of LPV/r monotherapy in HIV: the role of compartment and CD4 nadir. AIDS 2010; 24:2347-2354.
- 330. Wilkin TJ, McKinnon JE, DiRienzo AG, Mollan K, Fletcher CV, Margolis DM, et al. Regimen simplification to atazanavir-ritonavir alone as maintenance antiretroviral therapy: final 48-week clinical and virologic outcomes. J Infect Dis 2009; 199:866-871.
- 331. Pulido F, Serrano O, Rivero A, Montes ML, Rubio R, López Bernaldo de Quirós JC, et al. Atazanavir/ritonavir en monoterapia como mantenimiento en pacientes con supresión virológica: Análisis primario a las 48 semanas del estudio OREY. I Congreso Nacional de Gesida, Madrid, 21-24 octubre 2009. PO-70
- 332. Arribas JR, Horban A, Gerstoft J, Fatkenheuer G, Nelson M, Clumeck N, et al. The MONET trial: darunavir/ritonavir with or without nucleoside analogues, for patients with HIV RNA below 50 copies/ml. AIDS 2010; 24:223-230.
- 333. Clumeck N, Rieger A, Banhegyi D, Schmidt W, Hill A, van Delft Y, et al. 96 week results from the MONET trial: a randomized comparison of darunavir/ritonavir with versus without nucleoside analogues, for patients with HIV RNA <50 copies/mL at baseline. J Antimicrob Chemother 2011; 66:1878-1885.
- 334. Arribas JR, Clumeck N, Nelson M, Hill A, van Delft Y, Moecklinghoff C. The MONET trial: week 144 analysis of the efficacy of darunavir/ritonavir (DRV/r) monotherapy versus DRV/r plus two nucleoside reverse transcriptase inhibitors for patients with viral load <50 HIV-1 RNA copies/mL at baseline. HIV Med 2012;13: 398-405.
- 335. Molto J, Valle M, Santos JR, Mothe B, Miranda C, Cedeno S, et al. Treatment simplification to once daily darunavir/ritonavir guided by the darunavir inhibitory quotient in heavily pretreated HIV-infected patients. Antivir Ther 2010; 15:219-225.
- 336. Cahn P, Fourie J, Grinsztejn B, Hodder S, Molina JM, Ruxrungtham K et al. Week 48 analysis of once-daily vs. twice-daily darunavir/ritonavir in treatment-experienced HIV-1-infected patients. AIDS 2011; 25:929-939.
- 337. Curran A, Gutiérrez M, Deig E, Mateo G, Lopez RM, Imaz A, et al. Efficacy, safety and pharmacokinetics of 900/100 mg of darunavir/ritonavir once daily in treatment-experienced patients. J Antimicrob Chemother 2010; 65:2195-2203.
- 338. Katlama C, Valantin MA, Algarte-Genin M, Duvivier C, Lambert-Niclot S, Girard PM et al. Efficacy of darunavir/ritonavir maintenance monotherapy in patients with HIV-1 viral suppression: a randomized open-label, noninferiority trial, MONOI-ANRS 136. AIDS 2010; 24:2365-2374.

- 339. Lambert-Niclot S, Flandre P, Valantin MA, Peytavin G, Puvivier C, Saim-Boukobza S, et al. Factors associated with virological failure in HIV-1-infected patients receiving darunavir/ritonavir monotherapy. J Infect Dis 2011; 204: 1211-1216.
- 340. Valantin MA, Lambert-Niclot S, Flandre P, Morand-Joubert L, Cabie A, Meynard JL, et al. Long-term efficacy of darunavir/ritonavir monotherapy in patients with HIV-1 viral suppression: week 96 results from the MONOI ANRS 136 study. J Antimicrob Chemother 2012; 67:691-695.
- 341. Valentin MA, Flandre P, Kolta S, Duvivier C, Algarte-Genin M, Meynard JL, et al. Body fat distribution in HIV-infected patients treated for 96 weeks with darunavir/ritonavir monotherapy versus darunavir/ritonavir plus nucleoside reverse transcriptase inhibitors: the MONOI-ANRS136 substudy. HIV Med 2012; 13:505-515.
- 342. Mathis S, Khanlari B, Pulido F, Schechter M, Negredo E, Nelson M, et al. Effectiveness of protease inhibitor monotherapy versus combination antiretroviral maintenance therapy: a meta-analysis. PLoS One 2011; 6:e22003.
- 343. De Luca A, Doino M, Fabbiani M, Bracciale L, Ciccarelli N, Colafigli M, et al. Treatment simplification to atazanavir/ritonavir plus lamivudine q.d. in patients on two NRTIs plus atazanavir/ritonavir with optimal virologic control: 48 weeks safety and efficacy results from a pilot study (Atazanavir and Lamivudine Simplification Study [ATLAS]). Program and abstracts of the Program and Abstracts of the 6th IAS Conference on HIV Pathogenesis, Treatment and Prevention; July 17-20, 2011; Rome, Italy. Abstract CDB357.
- 344. Fabbiani M, Colafigli M, Farina S, et al.Treatment simplification to Atazanavir/Ritonavir plus lamivudine QD in patients on two NRTIs plus Atazanavir/Ritonavir with optimal virologic control: 96 weeks follow-up of a pilot study (Atazanavir and Lamivudine Simplification Study [ATLAS]). Program and abstracts of the 19nd International AIDS Conference. July 22-27, 2012; Washington DC, USA. Abstract TUPE097.
- 345. Ghosn J, Carosi G, Moreno S, Pokrovsky V, Lazzarin A, Pialoux G, et al. Unboosted atazanavir-based therapy maintains control of HIV type-1 replication as effectively as a ritonavir-boosted regimen. Antivir Ther 2010; 15:993-1002.
- 346. Squires KE, Young B, DeJesus E, Bellos N, Murphy D, Sutherland-Phillips DH, et al. Safety and efficacy of a 36-week induction regimen of abacavir/lamivudine and ritonavir-boosted atazanavir in HIV-infected patients. HIV Clin Trials 2010; 11:69-79.
- 347. Squires KE, Young B, DeJesus E, Bellos N, Murphy D, Zhao HH, et al. Similar efficacy and tolerability of atazanavir compared with atazanavir/ritonavir, each with abacavir/lamivudine after initial suppression with abacavir/lamivudine plus ritonavir-boosted atazanavir in HIV-infected patients. AIDS 2010; 24:2019-2027.

- 348. Squires KE, Young B, DeJesus E, Bellos N, Murphy D, Ward D, et al. ARIES 144 week results: durable virologic suppression in HIV-infected patients simplified to unboosted atazanavir/abacavir/lamivudine. HIV Clin Trials 2012; 13:233-244.
- 349. Wohl D, Bhatti L, Small CB, et al. Simplification to abacavir/lamivudine + atazanavir from tenofovir/emtricitabine + Atazanavir/ritonavir maintains viral suppression and improves bone biomarkers. Program and abstracts of the 52nd Interscience Conference on Antimicrobial Agents and Chemoteherapy (ICAAC). San Francisco, CA. September 9-12, 2012. Abstract H-556c.
- 350. Becker S, Rachlis A, Gill J, DeJesus E, Pierone G, Kirkland L et al. Successful substitution of protease inhibitors with efavirenz in patients with undetectable viral loads: A prospective, randomized, multicenter, open-label study (DMP 049). Program and abstracts of the 8th Conference on Retroviruses and Opportunistic Infections, Chicago, February 4-8, 2001. Abstract 20.
- 351. Katlama C, Stazewsky S, Clumeck N, Arasteh K, Dellamonica P, Molina JM, et al. Successful substitution of protease inhibitors with Sustiva (efavirenz) in patients with undetectable plasma HIV-1 RNA: results of a prospective, randomized, multicenter, open-label study (DMP 006-027). Program and abstracts of the XIII International AIDS Conference, Durban, South Africa, 2000. Abstract LbPeB7044.
- 352. Negredo E, Cruz L, Paredes R, Ruiz L, Fumaz CR, Bonjoch A, et al. Virological, immunological, and clinical impact of switching from protease inhibitors to nevirapine or to efavirenz in patients with human immunodeficiency virus infection and long-lasting viral suppression. Clin Infect Dis 2002; 34:504-510.
- 353. Maggiolo F, Ripamonti D, Ravasio L, Gregis G, Quinzan G, Callegaro A, et al. Outcome of 2 simplification strategies for the treatment of human immunodeficiency virus type 1 infection. Clin Infect Dis 2003; 37:41-49.
- 354. Campo RE, Cohen C, Grimm K, Shangguan T, Maa J, Seekins D. Switch from protease inhibitor- to efavirenz-based antiretroviral therapy improves quality of life, treatment satisfaction and adherence with low rates of virological failure in virologically suppressed patients. Int J STD AIDS 2010; 21:166-171.
- 355. Ruiz L, Negredo E, Domingo P, Paredes R, Francia E, Balague M, et al. Antiretroviral treatment simplification with nevirapine in protease inhibitor-experienced patients with hiv-associated lipodystrophy: 1-year prospective follow-up of a multicenter, randomized, controlled study. J Acquir Immune Defic Syndr 2001; 27:229-36.
- 356. Negredo E, Ribalta J, Paredes R, Ferre R, Sirera G, Ruiz L, et al. Reversal of atherogenic lipoprotein profile in HIV-1 infected patients with lipodystrophy after replacing protease inhibitors by nevirapine. AIDS 2002; 16:1383-1389.

- 357. Arranz Caso JA, Lopez JC, Santos I, Estrada V, Castilla V, Sanz J, et al. A randomized controlled trial investigating the efficacy and safety of switching from a protease inhibitor to nevirapine in patients with undetectable viral load. HIV Med 2005; 6:353-359.
- 358. Barreiro P, Soriano V, Blanco F, Casimiro C, de la Cruz JJ, Gonzalez-Lahoz J. Risks and benefits of replacing protease inhibitors by nevirapine in HIV-infected subjects under long-term successful triple combination therapy. AIDS 2000; 14:807-812.
- 359. Negredo E, Miro O, Rodriguez-Santiago B, Garrabou G, Estany C, Masabeu A et al. Improvement of mitochondrial toxicity in patients receiving a nucleoside reverse-transcriptase inhibitor-sparing strategy: results from the Multicenter Study with Nevirapine and Kaletra (MULTINEKA). Clin Infect Dis 2009; 49:892-900.
- 360. Clumeck N, Goebel F, Rozenbaum W, Gerstoft J, Staszewski S, Montaner J, et al. Simplification with abacavir-based triple nucleoside therapy versus continued protease inhibitor-based highly active antiretroviral therapy in HIV-1-infected patients with undetectable plasma HIV-1 RNA. AIDS 2001; 15:1517-26.
- 361. Manfredi R, Calza L. Nevirapine versus efavirenz in 742 patients: no link of liver toxicity with female sex, and a baseline CD4 cell count greater than 250 cells/microl. AIDS 2006; 20:2233-2236.
- 362. Wolf E, Koegl C, Theobald T, jaegel-Guedes E, Jaeger H. Nevirapine-associated hepatotoxicity: no increased risk for females or high CD4 count in a single-centre HIV cohort. Program and abstracts of the 46th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, September 2-30 2006. Abstract H-1063
- 363. de Lazzari E, Leon A, Arnaiz JA, Martinez E, Knobel H, Negredo E, et al. Hepatotoxicity of nevirapine in virologically suppressed patients according to gender and CD4 cell counts. HIV Med 2008; 9:221-226.
- 364. Mocroft A, Staszewski S, Weber R, Gatell J, Rockstroh J, Gasiorowski J, et al. Risk of discontinuation of nevirapine due to toxicities in antiretroviral-naive and -experienced HIV-infected patients with high and low CD4+ T-cell counts. Antivir Ther 2007; 12:325-333.
- 365. Antela A, Ocampo A, Gomez R, Lopez MJ, Marino A, Losada E, et al. Liver toxicity after switching or simplifying to nevirapine-based therapy is not related to CD4 cell counts: results of the TOSCANA study. HIV Clin Trials 2010; 11:11-17.
- 366. Wit FW, Kesselring AM, Gras L, Richter C, Van Der Ende ME, Brinkman K, et al. Discontinuation of nevirapine because of hypersensitivity reactions in pa-

- tients with prior treatment experience, compared with treatment-naive patients: the ATHENA cohort study. Clin Infect Dis 2008; 46:933-940.
- 367. Katlama C, Fenske S, Gazzard B, Lazzarin A, Clumeck N, Mallolas J et al. TRIZAL study: switching from successful HAART to Trizivir (abacavir-lamivudine-zidovudine combination tablet): 48 weeks efficacy, safety and adherence results. HIV Med 2003; 4:79-86.
- 368. Opravil M, Hirschel B, Lazzarin A, Furrer H, Chave JP, Yerly S et al. A randomized trial of simplified maintenance therapy with abacavir, lamivudine, and zidovudine in human immunodeficiency virus infection. J Infect Dis 2002; 185:1251-1260.
- 369. Mallolas J, Pich J, Penaranda M, Domingo P, Knobel H, Pedrol E, et al. Induction therapy with trizivir plus efavirenz or lopinavir/ritonavir followed by trizivir alone in naive HIV-1-infected adults. AIDS 2008; 22:377-384.
- 370. Hoogewerf M, Regez RM, Schouten WE, Weigel HM, Frissen PH, Brinkman K. Change to abacavir-lamivudine-tenofovir combination treatment in patients with HIV-1 who had complete virological suppression. Lancet 2003; 362:1979-1980.
- 371. Martinez E, Arnaiz JA, Podzamczer D, Dalmau D, Ribera E, Domingo P, et al. Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with human immunodeficiency virus infection. N Engl J Med 2003; 349:1036-1046.
- 372. Martinez E, Arnaiz JA, Podzamczer D, Dalmau D, Ribera E, Domingo P, et al. Three-year follow-up of protease inhibitor-based regimen simplification in HIV-infected patients. AIDS 2007; 21:367-369.
- 373. Fisac C, Fumero E, Crespo M, Roson B, Ferrer E, Virgili N, et al. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS 2005; 19:917-925.
- 374. Martinez E, Gatell JM. Considerations on the effectiveness of nevirapine in protease inhibitor-based regimen simplification. AIDS 2007; 21:1829-1830.
- 375. Gatell J, Salmon-Ceron D, Lazzarin A, van WE, Antunes F, Leen C, et al. Efficacy and safety of atazanavir-based highly active antiretroviral therapy in patients with virologic suppression switched from a stable, boosted or unboosted protease inhibitor treatment regimen: the SWAN Study (AI424-097) 48-week results. Clin Infect Dis 2007; 44:1484-1492.
- 376. Mallolas J, Podzamczer D, Milinkovic A, Domingo P, Clotet B, Ribera E, et al. Efficacy and safety of switching from boosted lopinavir to boosted atazanavir in patients with virological suppression receiving a LPV/r-containing HAART: the ATAZIP study. J Acquir Immune Defic Syndr 2009; 51:29-36.

- 377. Rubio R, Serrano O, Carmena J, Asensi V, Echevarria S, Flores J, et al. Effect of simplification from protease inhibitors to boosted atazanavir-based regimens in real-life conditions. HIV Med 2010; 11:545-553.
- 378. Moyle GJ, Andrade-Villanueva J, Girard PM, Antinori A, Salvato P, Bogner JR, et al. A randomized comparative 96-week trial of boosted atazanavir versus continued boosted protease inhibitor in HIV-1 patients with abdominal adiposity. Antivir Ther 2012; 17:689-700.
- 379. Sension M, ndrade Neto JL, Grinsztejn B, Molina JM, Zavala I, Gonzalez-Garcia J et al. Improvement in lipid profiles in antiretroviral-experienced HIV-positive patients with hyperlipidemia after a switch to unboosted atazanavir. J Acquir Immune Defic Syndr 2009; 51:153-162.
- 380. Parienti JJ, Bangsberg DR, Verdon R, Gardner EM. Better adherence with once-daily antiretroviral regimens: a meta-analysis. Clin Infect Dis 2009; 48:484-488.
- 381. Molina JM, Journot V, Morand-Joubert L, Yeni P, Rozenbaum W, Rancinan C, et al. Simplification therapy with once-daily emtricitabine, didanosine, and efavirenz in HIV-1-infected adults with viral suppression receiving a protease inhibitor-based regimen: a randomized trial. J Infect Dis 2005; 191:830-839.
- 382. Negredo E, Molto J, Munoz-Moreno JA, Pedrol E, Ribera E, Viciana P, et al. Safety and efficacy of once-daily didanosine, tenofovir and nevirapine as a simplification antiretroviral approach. Antivir Ther 2004; 9:335-342.
- 383. Barrios A, Rendon A, Negredo E, Barreiro P, Garcia-Benayas T, Labarga P, et al. Paradoxical CD4+ T-cell decline in HIV-infected patients with complete virus suppression taking tenofovir and didanosine. AIDS 2005; 19:569-575.
- 384. Fisher M, Moyle GJ, Shahmanesh M, Orkin C, Kingston M, Wilkins E et al. A randomized comparative trial of continued zidovudine/lamivudine or replacement with tenofovir disoproxil fumarate/emtricitabine in efavirenz-treated HIV-1-infected individuals. J Acquir Immune Defic Syndr 2009; 51:562-568.
- 385. Martínez E, Larrouse M, Curran A, Negredo E, Clotet B, Estrada V, et al. Impact of switching from zidovudine/lamivudine to tenofovir/emtricitabine on lipoatrophy: the RECOMB study. HIV Med 2013 Jan 9. doi: 10.1111/hiv.12011. Epub ahead of print.
- 386. Valantin MA, Bittar R, de TP, Bollens D, Slama L, Giral P, et al. Switching the nucleoside reverse transcriptase inhibitor backbone to tenofovir disoproxil fumarate + emtricitabine promptly improves triglycerides and low-density lipoprotein cholesterol in dyslipidaemic patients. J Antimicrob Chemother 2010; 65:556-561.

- 387. Martinez E, Arranz JA, Podzamczer D, Lonca M, Sanz J, Barragan P, et al. A simplification trial switching from nucleoside reverse transcriptase inhibitors to once-daily fixed-dose abacavir/lamivudine or tenofovir/emtricitabine in HIV-1-infected patients with virological suppression. J Acquir Immune Defic Syndr 2009; 51:290-297.
- 387. Saumoy M, Ordoñez-Llanos J, Martínez E, Barragán P, Ribera E, Bonet R, et al. Low-density lipoprotein size and lipoprotein-associated phospholipase A2 in HIV-infected patients switching to abacavir or tenofovir. Antivir Ther 2011; 16:459-468.
- 388. Martínez E, Larrousse M, Podzamczer D, Pérez I, Gutiérrez F, Lonca M, et al. Abacavir-based therapy does not affect biological mechanisms associated with cardiovascular dysfunction. AIDS 2010; 24:F1-F9.
- 389. Martin A, Bloch M, Amin J, Baker D, Cooper DA, Emery S, et al. Simplification of antiretroviral therapy with tenofovir-emtricitabine or abacavir-Lamivudine: a randomized, 96-week trial. Clin Infect Dis 2009; 49:1591-1601.
- 390. Martin A, Amin J, Cooper DA, Carr A, Kelleher AD, Bloch M et al. Abacavir does not affect circulating levels of inflammatory or coagulopathic biomarkers in suppressed HIV: a randomized clinical trial. AIDS 2010; 24:2657-2663.
- 391. DeJesus E, Young B, Morales-Ramirez JO, Sloan L, Ward DJ, Flaherty JF, et al. Simplification of antiretroviral therapy to a single-tablet regimen consisting of efavirenz, emtricitabine, and tenofovir disoproxil fumarate versus unmodified antiretroviral therapy in virologically suppressed HIV-1-infected patients. J Acquir Immune Defic Syndr 2009; 51:163-174.
- 392. Hodder SL, Mounzer K, DeJesus E, Ebrahimi R, Grimm K, Esker S, et al. Patient-reported outcomes in virologically suppressed, HIV-1-Infected subjects after switching to a simplified, single-tablet regimen of efavirenz, emtricitabine, and tenofovir DF. AIDS Patient Care STDS 2010; 24:87-96.
- 393. Podzamczer D, Olmo M, Sanz J, Boix V, Negredo E, Knobel H, et al. Safety of switching nevirapine twice daily to nevirapine once daily in virologically suppressed patients. J Acquir Immune Defic Syndr 2009; 50:390-396.
- 394. Palella F, Tebas P, Gazzard B, Ruane P, Shamblaw D, Flamm J, el al. Switching boosted PI to Rilpivirine In combination with Truvada as a single-tablet regimen week 24 results. The SPIRIT Study. Program and abstracts of the 19nd International AIDS Conference; July 22-27, 2012; Washington DC, USA. Abstract TUAB0104.
- 395. Towner W, Klein D, Kerrigan HL, Follansbee S, Yu K, Horberg M. Virologic outcomes of changing enfuvirtide to raltegravir in HIV-1 patients well controlled on an enfuvirtide based regimen: 24-week results of the CHEER study. J Acquir Immune Defic Syndr 2009; 51:367-373.

- 396. Harris M, Larsen G, Montaner JSG. Outcomes of patients switched from Raltegravir within a virologically suppressive regimen. AIDS 2008; 22:1224-1226.
- 397. De Castro N, Braun J, Charreau I, Pialoux G, Cotte L, Katlama C, et al. Switch from Enfuvirtide to Raltegravir in highly treatment-experienced patients: a randomized open label trial. Clin Infect Dis. 2009; 49:1259-1267.
- 398. Gatti F, Matti A, Nasta P, Cologni G, Costarelli S, Carosi G. Switch from enfuvirtide to raltegravir: a simplification option for heavily pretreated patients. Program and abstracts of the 9th International Congess on Drug Therapy in HIV Infection, Glasgow, November 9-13 2008. Abstract P52
- 399. Talbot A, Machouf N, Thomas R, Marcotte S, Therrien R, Lessard B, et al. Switch from enfuvirtide to raltegravir in patients with undetectable viral load: efficacy and safety at 24 weeks in a Montreal cohort. J Acquir Immune Defic Syndr 2009; 51:362-364.
- 400. Santos JR, Llibre JM, Ferrer E, Domingo P, Imaz A, Molto J, et al. Efficacy and safety of switching from enfuvirtide to raltegravir in patients with virological suppression. HIV Clin Trials 2009; 10:432-438.
- 401. Loutfy M, Ribera E, Florence E, De WS, Castagna A, Ryan R, et al. Sustained HIV RNA suppression after switching from enfuvirtide to etravirine in the early access programme. J Antimicrob Chemother 2009; 64:1341-1344.
- 402. Eron JJ, Young B, Cooper DA, Youle M, DeJesus E, ndrade-Villanueva J et al. Switch to a raltegravir-based regimen versus continuation of a lopinavir-ritonavir-based regimen in stable HIV-infected patients with suppressed viraemia (SWITCHMRK 1 and 2): two multicentre, double-blind, randomised controlled trials. Lancet 2010; 375:396-407.
- 403. Martinez E, Larrousse M, Llibre JM, Gutierrez F, Saumoy M, Antela A, et al. Substitution of raltegravir for ritonavir-boosted protease inhibitors in HIV-infected patients: the SPIRAL study. AIDS 2010; 24:1697-1707.
- 404. Martínez E, D'Albuquerque PM, Llibre JM, Gutiérrez F, Podzamczer D, Antela A, et al. Changes of cardiovascular biomarkers in HIV-infected patients switching from ritonavir-boosted protease inhibitors to raltegravir. AIDS 2012, AIDS. 2012; 26:2315-26.
- 405. Masiá M, Martínez E, Padilla S, Gatell JM, Gutiérrez F. Endothelial function in HIV-infected patients switching from a boosted protease inhibitor-based regimen to raltegravir: a substudy of the SPIRAL study. J Antimicrob Chemother 2012, 2013; 68:409-13.
- 406. Saumoy M, Sánchez-Quesada JL, Martínez E, Llibre JM, Ribera E, Knobel H, et al. LDL subclasses and lipoprotein-phospholipase A2 activity in suppressed HIV-infected patients switching to raltegravir: Spiral substudy. Atherosclerosis 2012; 225:200-207.

- 407. Vispo E, Barreiro P, Maida I, Mena A, Blanco F, Rodriguez-Novoa, S et al. Simplification from protease inhibitors to once- or twice-daily raltegravir: the ODIS trial. HIV Clin Trials 2010; 11:197-204.
- 408. Kilby JM. Switching HIV therapies: competing host and viral factors. Lancet 2010; 375:352-354.
- 409. Parra-Ruiz J, Alvarez M, Chueca N, Pena A, Pasquau J, López-Ruz MA, et al. Resistencias genotípicas en pacientes con VIH-1 y grados de viremia persistentemente bajos. Enferm Infecc Microbiol Clin 2009; 27:75-80.
- 410. Lima V, Harrigan R, Montaner JS. Increased reporting of detectable plasma HIV-1 RNA levels at the critical threshold of 50 copies per milliliter with the Taqman assay in comparison to the Amplicor assay. J Acquir Immune Defic Syndr 2009; 51:3-6.
- 411. Ribaudo H, Lennox J, Currier J, Kuritzkes DR, Gulick R, Haubrich R, et al. Virologic failure endpoint definition in clinical trials: Is using HIV-1 RNA threshold <200 copies/mL better than <50 copies/mL. An analysis of ACTG studies. Program and abstracts of the 16th Conference on Retroviruses and Opportunistic Infections, Montreal, February 8-11, 2009. Abstract 580.
- 412. Doyle T, Smith C, Vitiello P, Cambiano V, Johnson M, Owen A, et al. Detection below 50 copies/mL and risk of virologic rebound in patients receiving highly active antiretroviral therapy. Clin Infect Dis 2012; 54:729-737.
- 413. Taiwo B, Gallien S, Aga E, Ribaudo H, Haubrich R, Kuritzkes DR, et al. Antiretroviral drug resistance in HIV-1-infected patients experiencing persistent low-level viremia during first-line therapy. J Infect Dis 2011; 204:515-520.
- 414. Gathe J, Andrade-Villanueva J, Santiago S, Horban A, Nelson M, Cahn P, et al. Efficacy and safety of nevirapine extended-release once daily versus nevirapine immediate-release twice-daily in treatment-naive HIV-1-infected patients. Antivir Ther 2011; 16:759-769.
- 415. de Mendoza C, Garrido C, Rodriguez C, Aguilera A, Gutierrez F, LaPaz, M et al. Trends in HIV-1 non-B subtypes and drug resistance among Individuals with primary HIV infection in Spain since year 1997. Antivir Ther 2011; 16 (Suppl 1): A158.
- 416. Charpentier C, Lambert-Niclot S, Larrouy L, Storto A, Landman R, Tonelli D, et al. Evolution of the K65R, K103N and M184V/I reverse transcriptase mutations prevalence in HIV-1-infected patients experiencing virologic failure between 2005 and 2010. Program and abstracts of the 19th Conference on Retroviruses and Opportunistic Infections; March 5-8, 2012. Seattle, WA. Abstract 726.

- 417. Blanco JL, Montaner J, Branstetter D, Santoro MM, Campos-Loza AE, Perez I, et al. Drug resistance prevalence after failing antiretroviral therapy (ART) with Tenofovir (TDF) + Emtricitrabine/Lamivudine (3TC/FTC) + Efavirenz (EFV) vs the single tablet regimen (STR) Atripla: The ATRES study. Antiviral Therapy 2012; 17 (Suppl 1): A115.
- 418. Wainberg MA, Zaharatos GJ, Brenner BG. Development of antiretroviral drug resistance. N Engl J Med 2011; 365:637-646.
- 419. Waters L, Bansi L, Asboe D, Pozniak A, Smit E, Orkin C, et al. Second line protease inhibitor (PI/r) based antiretroviral therapy (ART) after non-nucleoside reverse transcriptase inhibitor (NNRTI) failure: impact of nucleoside (NRTI) backbone. Antivir Ther 2012, August 22. Epub ahead of print.
- 420. Katlama C, Haubrich R, Lalezari J, Lazzarin A, Madruga JV, Molina JM, et al. Efficacy and safety of etravirine in treatment-experienced, HIV-1 patients: pooled 48 week analysis of two randomized, controlled trials. AIDS 2009; 23:2289-2300.
- 421. Llibre JM, Schapiro JM, Clotet B. Clinical implications of genotypic resistance to the newer antiretroviral drugs in HIV-1-infected patients with virological failure. Clin Infect Dis 2010; 50:872-881.
- 422. Palella FJ, Jr., Armon C, Buchacz K, Cole SR, Chmiel JS, Novak RM, et al. The association of HIV susceptibility testing with survival among HIV-infected patients receiving antiretroviral therapy: a cohort study. Ann Intern Med 2009; 151:73-84.
- 423. Garcia F, Alvarez M, Fox Z, Garcia-Diaz A, Guillot V, Johnson M, et al. Predicting antiretroviral drug resistance from the latest or the cumulative genotype. Antivir Ther 2011; 16:373-382.
- 424. Cane PA, Kaye S, Smit E, Tilston P, Kirk S, Shepherd J, et al. Genotypic antiretroviral drug resistance testing at low viral loads in the UK. HIV Med 2008; 9:673-676.
- 425. Llibre JM. Do we need genotypic weighted resistance scores for antiretrovirals? The curious case of tipranavir. Antivir Ther 2010; 15:959-961.
- 426. Goodman DD, Zhou Y, Margot NA, McColl DJ, Zhong L, Borroto-Esoda K, et al. Low level of the K103N HIV-1 above a threshold is associated with virological failure in treatment-naive individuals undergoing efavirenz-containing therapy. AIDS 2011; 25:325-333
- 427. Lataillade M, Chiarella J, Yang R, Schnittman S, Wirtz V, Uy J, et al. Prevalence and clinical significance of HIV drug resistance mutations by Ultra-deep sequencing in antiretroviral-naïve subjects in the CASTLE Study. PLoS One 2010; 5:e10952.

- 428. Ross L, Squires K, Young B, DeJesus E, Bellos N, Murphy D, et al. Pre-therapy detection of transmitted low-abundance HIV-1 resistance mutation-containing variants in antiviral-naïve subjects and implications for subsequent clinical therapy response. Program and abstracts of the 51th Interscience Conference on Antimicrobial Agents and Chemoteherapy (ICAAC). Chicago, IL. September 17-20, 2011. Abstract H2-796.
- 429. Elzi L, Hirsch HH, Battegay M. Once-daily directly observed therapy lop-inavir/ritonavir plus indinavir as a protease inhibitor-only salvage therapy in heavily pretreated HIV-1-infected patients: a pilot study. AIDS 2006; 20:129-131.
- 430. Bunupuradah T, Chetchotisakd P, Ananworanich J, Munsakul W, Jirajariyavet S, Kantipong P. et al. A randomized comparison of second-line lop-inavir/ritonavir monotherapy versus tenofovir/lamivudine/lopinavir/ ritonavir in patients failing NNRTI regimens: the HIV STAR study. Antivir Ther 2012, Oct 25. doi: 10.3851/IMP2452. [Epub ahead of print].
- 431. Bartlett J, Ribaudo HJ, Wallis CL, Aga E, Katzenstein DA, Stevens WS, et al. Lop-inavir/ritonavir monotherapy after virologic failure of first-line antiretroviral therapy in resource limited settings. AIDS 2012; 26:1345-1354.
- 432. Lalezari JP, Henry K, O'Hearn M, Montaner JS, Piliero PJ, Trottier B, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 2003; 348:2175-2185.
- 433. Lazzarin A, Clotet B, Cooper D, Reynes J, Arasteh K, Nelson M, et al. Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 2003; 348:2186-95.
- 434. Hicks CB, Cahn P, Cooper DA, Walmsley SL, Katlama C, Clotet B, et al. Durable efficacy of tipranavir-ritonavir in combination with an optimised background regimen of antiretroviral drugs for treatment-experienced HIV-1-infected patients at 48 weeks in the Randomized Evaluation of Strategic Intervention in multi-drug reSistant patients with Tipranavir (RESIST) studies: an analysis of combined data from two randomised open-label trials. Lancet 2006; 368:466-475.
- 435. Clotet B, Bellos N, Molina JM, Cooper D, Goffard JC, Lazzarin A, et al. Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet 2007; 369:1169-1178.
- 436. Madruga JV, Cahn P, Grinsztejn B, Haubrich R, Lalezari J, Mills A et al. Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-1: 24-week results from a randomised, double-blind, place-bo-controlled trial. Lancet 2007; 370:29-38.

- 437. Gulick RM., Lalezari J, Goodrich J, Clumeck N, DeJesus E, Horban A, et al. Maraviroc for Previously Treated Patients with R5 HIV-1 Infection. N Engl J Med 2008; 359:1429-1441.
- 438. Steigbigel RT, Cooper DA, Kumar PN, Eron JE, Schechter M, Markowitz M, et al. Raltegravir with optimized background therapy for resistant HIV-1 infection. N Engl J Med 2008; 359:339-354.
- 439. Schapiro JM, Scherer J, Boucher CA, Baxter JD, Tilke C, Perno CF, et al. Improving the prediction of virological response to tipranavir: the development and validation of a tipranavir-weighted mutation score. Antivir Ther 2010; 15:1011-1019.
- 440. Vingerhoets J, Tambuyzer L, Azijn H, Hoogstoel A, Nijs S, Peeters M, et al. Resistance profile of etravirine: combined analysis of baseline genotypic and phenotypic data from the randomized, controlled Phase III clinical studies. AIDS 2010; 24:503-514.
- 441. Varghese V, Shahriar R, Rhee SY, Liu T, Simen BB, Egholm M, et al. Minority variants associated with transmitted and acquired HIV-1 nonnucleoside reverse transcriptase inhibitor resistance: implications for the use of second-generation nonnucleoside reverse transcriptase inhibitors. J Acquir Immune Defic Syndr 2009; 52:309-315.
- 442. Johnson VA, Brun-Vezinet F, Clotet B, Gunthard HF, Kuritzkes DR, Pillay D, et al. Update of the drug resistance mutations in HIV-1: Spring 2008. Top HIV Med 2008; 16:62-68.
- 443. Lazzarin A, Campbell T, Clotet B, Johnson M, Katlama C, Moll A, et al. Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-2: 24-week results from a randomised, double-blind, place-bo-controlled trial. Lancet 2007; 370:39-48.
- 444. Poveda E, Paredes R, Moreno S, Alcami J, Cordoba J, Delgado R, et al. Update on clinical and methodological recommendations for genotypic determination of HIV tropism to guide the usage of CCR5 antagonists. AIDS Rev 2012; 14: 208-217.
- 445. Eron JJ, Cooper DA, Steigbigel RT, Clotet B, Wan H, Zhao H, et al. Exploratory analysis in the BENCHMRK studies at week 192: Late outcomes based on early virologic responses. Program and abstracts of the 6th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Rome, 17-20 July 2011. Abstract MOPE225.
- 446. Molina JM, LaMarca A, Andrade-Villanueva J, Clotet B, Clumeck N, Liu YP, et al. Efficacy and safety of once daily elvitegravir versus twice daily raltegravir in treatment-experienced patients with HIV-1 receiving a ritonavir-boosted protease inhibitor: randomised, double-blind, phase 3, non-inferiority study.. Lancet Infect Dis 2012; 12:27-35.

- 447. Underwood M, Johns B, Sato A, Martin JN, Deeks SG, Fujiwara T, et al. The activity of the integrase inhibitor dolutegravir against HIV-1 variants isolated from raltegravir-treated adults. J Acquir Immune Defic Syndr 2012; 61:297-301.
- 448. Imaz A, del Saz SV, Ribas MA, Curran A, Caballero E, Falco V, et al. Raltegravir, etravirine, and ritonavir-boosted darunavir: a safe and successful rescue regimen for multidrug-resistant HIV-1 infection. J Acquir Immune Defic Syndr 2009; 52:382-386.
- 449. Nieuwkerk PT, Oort FJ. Self-reported adherence to antiretroviral therapy for HIV-1 infection and virologic treatment response: a meta-analysis. J Acquir Immune Defic Syndr 2005; 38:445-448.
- 450. Wood E, Hogg RS, Yip B, Harrigan PR, O'Shaughnessy MV, Montaner JS. The impact of adherence on CD4 cell count responses among HIV-infected patients. J Acquir Immune Defic Syndr 2004; 35:261-268.
- 451. Lima VD, Harrigan R, Bangsberg DR, Hogg RS, Gross R, Yip B, et al. The combined effect of modern highly active antiretroviral therapy regimens and adherence on mortality over time. J Acquir Immune Defic Syndr 2009; 50:529-536.
- 452. Garcia de Olalla P, Knobel H, Carmona A, Guelar A, Lopez-Colomes JL, Cayla JA. Impact of adherence and highly active antiretroviral therapy on survival in HIV-infected patients. J Acquir Immune Defic Syndr 2002; 30:105-110.
- 453. Rueda S, Park-Wyllie LY, Bayoumi AM, Tynan AM, Antoniou TA, Rourke SB, et al. Patient support and education for promoting adherence to highly active antiretroviral therapy for HIV/AIDS. Cochrane Database Syst Rev Issue 3. Art. No.: CD001442. DOI: 10.1002/14651858.CD001442.pub2.
- 454. Mills EJ, Nachega JB, Bangsberg DR, Singh S, Rachlis B, Wu P, et al. Adherence to HAART: a systematic review of developed and developing nation patient-reported barriers and facilitators. PLoS One 2006; 3:e438.
- 455. Grierson J, Koelmeyer R, Smith A, Pitts M. Adherence to antiretroviral therapy: factors independently associated with reported difficulty taking antiretroviral therapy in a national sample of HIV-positive Australians. HIV Med 2011; 12:562-569.
- 456. Pardi GR, Nunes MA, Preto R, Canassa PG, Correia D. Profile of adherence to highly active antiretroviral therapy of patients older than 50 years old. J Acquir Immune Defic Syndr 2009; 52:301-303.
- 457. Ettenhofer ML, Hinkin CH, Castellon SA, Durvasula R, Ullman J, Lam M, et al. Aging, neurocognition, and medication adherence in HIV infection. Am J Geriatr Psychiatry 2009; 17:281-290.

- 458. Abdool Karim SS, Naidoo K, Grobler A, Padayatchi N, Baxter C, Gray AL, et al. Integration of antiretroviral therapy with tuberculosis treatment. N Engl J Med 2011; 365:1492-1501.
- 459. Havlir DV, Kendall MA, Ive P, Kumwenda J, Swindells S, Qasba SS, et al. Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. N Engl J Med 2011; 365:1482-1491.
- 460. Blanc FX, Sok T, Laureillard D, Borand L, Rekacewicz C, Nerrienet E, et al. Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. N Engl J Med 2011; 365:1471-1481.
- 461. Stone VE. Strategies for optimizing adherence to highly active antiretroviral therapy: lessons from research and clinical practice. Clin Infect Dis 2001; 33:865-872.
- 462. Muñoz-Moreno JA, Fumaz CR, Ferrer MJ, Tuldra A, Rovira T, Viladrich C, et al. Assessing self-reported adherence to HIV therapy by questionnaire: the SE-RAD (Self-Reported Adherence) Study. AIDS Res Hum Retroviruses 2007; 23:1166-1175.
- 463. Knobel H, Alonso J, Casado JL, Collazos J, Gonzalez J, Ruiz I, et al. Validation of a simplified medication adherence questionnaire in a large cohort of HIV-infected patients: the GEEMA Study. AIDS 2002; 16:605-613.
- 464. Duong M, Golzi A, Peytavin G, Piroth L, Froidure M, Grappin M et al. Usefulness of therapeutic drug monitoring of antiretrovirals in routine clinical practice. HIV Clin Trials 2004; 5:216-223.
- 465. Deschamps AE, Graeve VD, van Wijngaerden E., De Saar V, Vandamme AM, van Vaerenbergh K, et al. Prevalence and correlates of nonadherence to antiretroviral therapy in a population of HIV patients using Medication Event Monitoring System. AIDS Patient Care STDS 2004; 18:644-657.
- 466. Paterson DL, Swindells S, Mohr J, Brester M, Vergis EN, Squier C, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med 2000; 133:21-30.
- 467. Bangsberg DR. Less than 95% adherence to nonnucleoside reverse-transcriptase inhibitor therapy can lead to viral suppression. Clin Infect Dis 2006; 43:939-941.
- 468. Maggiolo F, Ravasio L, Ripamonti D, Gregis G, Quinzan G, Arici C, et al. Similar adherence rates favor different virologic outcomes for patients treated with nonnucleoside analogues or protease inhibitors. Clin Infect Dis 2005; 40:158-163.
- 469. Cohen CJ, Colson AE, Sheble-Hall AG, McLaughlin KA, Morse GD. Pilot study of a novel short-cycle antiretroviral treatment interruption strategy: 48-week

- results of the five-days-on, two-days-off (FOTO) study. HIV Clin Trials 2007; 8:19-23.
- 470. Knobel H, Urbina O, Gonzalez A, Sorli ML, Montero M, Carmona A, et al. Impact of different patterns of nonadherence on the outcome of highly active antiretroviral therapy in patients with long-term follow-up. HIV Med 2009; 10:364-369.
- 471. Nachega JB, Hislop M, Dowdy DW, Chaisson RE, Regensberg L, Maartens G. Adherence to nonnucleoside reverse transcriptase inhibitor-based HIV therapy and virologic outcomes. Ann Intern Med 2007; 146:564-573.
- 472. Nelson M, Girard PM, DeMasi R, Chen L, Smets E, Sekar V et al. Suboptimal adherence to darunavir/ritonavir has minimal effect on efficacy compared with lopinavir/ritonavir in treatment-naive, HIV-infected patients: 96 week ARTEMIS data. J Antimicrob Chemother 2010; 65:1505-1509.
- 473. Parienti JJ, Das-Douglas M, Massari V, Guzman D, Deeks SG, Verdon R, et al. Not all missed doses are the same: sustained NNRTI treatment interruptions predict HIV rebound at low-to-moderate adherence levels. PLoS One 2008; 3:e2783.
- 474. Bangsberg DR, Kroetz DL, Deeks SG. Adherence-resistance relationships to combination HIV antiretroviral therapy. Curr HIV/AIDS Rep 2007; 4:65-72.
- 475. Bangsberg DR. Preventing HIV antiretroviral resistance through better monitoring of treatment adherence. J Infect Dis 2008; 197 (Suppl 3):S272-S278.
- 476. Gardner EM, Sharma S, Peng G, Hullsiek KH, Burman WJ, MacArthur RD, et al. Differential adherence to combination antiretroviral therapy is associated with virological failure with resistance. AIDS 2008; 22:75-82.
- 477. Bangsberg DR, Ragland K, Monk A, Deeks SG. A single tablet regimen is associated with higher adherence and viral suppression than multiple tablet regimens in HIV+ homeless and marginally housed people. AIDS 2010; 24: 2835-2840.
- 478. Airoldi M, Zaccarelli M, Bisi L, Bini T, Antinori A, Mussini C, et al. One-pill once-a-day HAART: a simplification strategy that improves adherence and quality of life of HIV-infected subjects. Patient Prefer Adherence 2010; 13; 4:115-125.
- 479. Llibre JM, Arribas JR, Domingo P, Gatell JM, Lozano F, Santos JR et al. Clinical implications of fixed-dose coformulations of antiretrovirals on the outcome of HIV-1 therapy. AIDS 2011; 25:1683-1690.
- 480. Houston E, McKirnan DJ, Cervone D, Johnson MS, Sandfort TG. Assessing treatment motivation among patients receiving antiretroviral therapy: A multidimensional approach. Psychol Health 2012; 27:674-687.

- 481. Golin CE, Earp J, Tien HC, Stewart P, Porter C, Howie L. A 2-arm, randomized, controlled trial of a motivational interviewing-based intervention to improve adherence to antiretroviral therapy (ART) among patients failing or initiating ART. J Acquir Immune Defic Syndr 2006; 42:42-51.
- 482. Simoni JM, Amico KR, Smith L, Nelson K. Antiretroviral adherence interventions: translating research findings to the real world clinic. Curr HIV/AIDS Rep 2010; 7:44-51.
- 483. Hart JE, Jeon CY, Ivers LC, Behforouz HL, Caldas A, Drobac PC et al. Effect of directly observed therapy for highly active antiretroviral therapy on virologic, immunologic, and adherence outcomes: a meta-analysis and systematic review. J Acquir Immune Defic Syndr 2010; 54:167-179.
- 484. Berg KM, Litwin AH, Li X, Heo M, Arnsten JH. Lack of sustained improvement in adherence or viral load following a directly observed antiretroviral therapy intervention. Clin Infect Dis 2011; 53:936-943.
- 485. Kleeberger CA, Buechner J, Palella F, Detels R, Riddler S, Godfrey R, et al. Changes in adherence to highly active antiretroviral therapy medications in the Multicenter AIDS Cohort Study. AIDS 2004; 18:683-688.
- 486. Falco V, Rodríguez D, Ribera E, Martínez E, Miro JM, Domingo P, et al. Severe nucleoside-associated lactic acidosis in human immunodeficiency virus-infected patients: report of 12 cases and review of the literature. Clin Infect Dis 2002; 34:838-46.
- 487. Waters L, Nelson M. Long-term complications of antiretroviral therapy: lipoatrophy. Int J Clin Pract 2007; 61:999-1014.
- 488. Kesselring AM, Wit FW, Sabin CA, Lundgren JD, Gill MJ, Gatell JM, et al. Risk factors for treatment-limiting toxicities in patients starting nevirapine-containing antiretroviral therapy. AIDS 2009; 23:1689-1699.
- 489. Morsica G, Bianchi G, Bagaglio S, Conte C, Salpietro S, Porrino L, et al. Hepatic safety profile of darunavir with low-dose ritonavir (DRV/r) in HIV/HCV coinfected and HIV monoinfected patients. New Microbiol 2011; 34:317-321.
- 490. Pineda JA, Palacios R, Rivero A, Abdel-Kader L, Márquez M, Cano P, et al. Low incidence of severe liver toxicity in patients receiving antiretroviral combinations including atazanavir. J Antimicrob Chemother 2006; 57:1016-1017.
- 491. Palacios R, Vergara S, Rivero A, Aguilar I, Macias J, Camacho A, et al. Low incidence of severe liver events in HIV patients with and without hepatitis C or B coinfection receiving lopinavir/ritonavir. HIV Clin Trials 2006; 7:319-323.
- 492. Vispo E, Mena A, Maida I, Blanco F, Cordoba M, Labarga P, et al. Hepatic safety profile of raltegravir in HIV-infected patients with chronic hepatitis C. J Antimicrob Chemother 2010; 65:543-547.

- 493. Ayoub A, Alston S, Goodrich J, Heera J, Hoepelman AI, Lalezari J, et al. Hepatic safety and tolerability in the maraviroc clinical development program. AIDS 2010; 24:2743-2750.
- 494. Clifford DB, Evans S, Yang Y, Acosta EP, Goodkin K, Tashima K, et al. Impact of efavirenz on neuropsychological performance and symptoms in HIV-infected individuals. Ann Intern Med 2005; 143:714-721.
- 495. Journot V, Chene G, De CN, Rancinan C, Cassuto JP, Allard C, et al. Use of efavirenz is not associated with a higher risk of depressive disorders: a substudy of the randomized clinical trial ALIZE-ANRS 099. Clin Infect Dis 2006; 42:1790-1799.
- 496. Nelson MR, Katlama C, Montaner JS, Cooper DA, Gazzard B, Clotet B, et al. The safety of tenofovir disoproxil fumarate for the treatment of HIV infection in adults: the first 4 years. AIDS 2007; 21:1273-1281.
- 497. Cassetti I, Madruga JV, Suleiman JM, Etzel A, Zhong L, Cheng AK, et al. The safety and efficacy of tenofovir DF in combination with lamivudine and efavirenz through 6 years in antiretroviral-naive HIV-1-infected patients. HIV Clin Trials 2007; 8:164-172.
- 498. Gupta SK. Tenofovir-associated Fanconi syndrome: review of the FDA adverse event reporting system. AIDS Patient Care STDS 2008; 22:99-103.
- 499. Gallant JE, DeJesus E, Arribas JR, Pozniak AL, Gazzard B, Campo RE, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. N Engl J Med 2006; 354:251-260.
- 500. Moyle GJ, Sabin CA, Cartledge J, Johnson M, Wilkins E, Churchill D, et al. A randomized comparative trial of tenofovir DF or abacavir as replacement for a thymidine analogue in persons with lipoatrophy. AIDS 2006; 20:2043-2050.
- 501. Tordato F, Cozzi Lepri A., Cicconi P, De LA, Antinori A, Colangeli V, et al. Evaluation of glomerular filtration rate in HIV-1-infected patients before and after combined antiretroviral therapy exposure. HIV Med 2011; 12:4-13.
- 502. Wever K, van Agtmael MA, Carr A. Incomplete reversibility of tenofovir-related renal toxicity in HIV-infected men. J Acquir Immune Defic Syndr 2010; 55:78-81.
- 503. Moyle G. Metabolic issues associated with protease inhibitors. J Acquir Immune Defic Syndr 2007; 45 (Suppl 1):S19-S26.
- 504. Smith KY, Weinberg WG, DeJesus E, Fischl MA, Liao Q, Ross LL et al. Fosamprenavir or atazanavir once daily boosted with ritonavir 100 mg, plus tenofovir/emtricitabine, for the initial treatment of HIV infection: 48-week results of ALERT. AIDS Res Ther 2008;5:5.

- 505. Johnson M, Grinsztejn B, Rodriguez C, Coco J, DeJesus E, Lazzarin A, et al. Atazanavir plus ritonavir or saquinavir, and lopinavir/ritonavir in patients experiencing multiple virological failures. AIDS 2005; 19:153-162.
- 506. Tomaka F, Lefebvre E, Sekar V, Van BB, Vangeneugden T, Vandevoorde A, et al. Effects of ritonavir-boosted darunavir vs. ritonavir-boosted atazanavir on lipid and glucose parameters in HIV-negative, healthy volunteers. HIV Med 2009; 10:318-327.
- 507. Llibre JM, Domingo P, Palacios R, Santos J, Perez-Elias MJ, Sanchez-de la RR, et al. Sustained improvement of dyslipidaemia in HAART-treated patients replacing stavudine with tenofovir. AIDS 2006; 20:1407-1414.
- 508. Madruga JR, Cassetti I, Suleiman JM, Etzel A, Zhong L, Holmes CB, et al. The safety and efficacy of switching stavudine to tenofovir DF in combination with lamivudine and efavirenz in hiv-1-infected patients: three-year follow-up after switching therapy. HIV Clin Trials 2007; 8:381-390.
- 509. Brown TT, Li X, Cole SR, Kingsley LA, Palella FJ, Riddler SA, et al. Cumulative exposure to nucleoside analogue reverse transcriptase inhibitors is associated with insulin resistance markers in the Multicenter AIDS Cohort Study. AIDS 2005; 19:1375-1383.
- 510. De Wit S., Sabin CA, Weber R, Worm SW, Reiss P, Cazanave C, et al. Incidence and risk factors for new-onset diabetes in HIV-infected patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. Diabetes Care 2008; 31:1224-1229.
- 511. Ledergerber B, Furrer H, Rickenbach M, Lehmann R, Elzi L, Hirschel B, et al. Factors associated with the incidence of type 2 diabetes mellitus in HIV-infected participants in the Swiss HIV Cohort Study. Clin Infect Dis 2007; 45:111-119.
- 512. Fleischman A, Johnsen S, Systrom DM, Hrovat M, Farrar CT, Frontera W, et al. Effects of a nucleoside reverse transcriptase inhibitor, stavudine, on glucose disposal and mitochondrial function in muscle of healthy adults. Am J Physiol Endocrinol Metab 2007; 292:E1666-E1673.
- 513. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 2011;62:141-155.
- 514. Masiá M, Pérez-Cachafeiro S, Leyes M, López-Aldeguer J, López M, Segura F, et al. Riesgo cardiovascular en pacientes con infección por el virus de la inmunodeficiencia humana en España. Cohorte CoRIS, 2011. Enferm Infecc Microbiol Clin 2012; 30:517-527.
- 515. Bozzette SA, Ake CF, Tam HK, Phippard A, Cohen D, Scharfstein DO, et al. Long-term survival and serious cardiovascular events in HIV-infected patients

- treated with highly active antiretroviral therapy. J Acquir Immune Defic Syndr 2008; 47:338-341.
- 516. Holmberg SD, Moorman AC, Williamson JM, Tong TC, Ward DJ, Wood KC, et al. Protease inhibitors and cardiovascular outcomes in patients with HIV-1. Lancet 2002; 360:1747-1748.
- 517. Mary-Krause M, Cotte L, Simon A, Partisani M, Costagliola D, et al. Clinical Epidemiology Group from the French Hospital Database. Increased risk of myocardial infarction with duration of protease inhibitor therapy in HIV-infected men. AIDS 2003; 17:2479-2486.
- 518. Bongiovanni M, Casana M, Cicconi P, Pisacreta M, Codemo R, Pelucchi M, et al. Predictive factors of vascular intima media thickness in HIV-positive subjects. J Antimicrob Chemother 2008; 61:195-199.
- 519. Currier JS, Kendall MA, Henry WK, ston-Smith B, Torriani FJ, Tebas P, et al. Progression of carotid artery intima-media thickening in HIV-infected and uninfected adults. AIDS 2007; 21:1137-1145.
- 520. Currier JS, Lundgren JD, Carr A, Klein D, Sabin CA, Sax PE, et al. Epidemiological evidence for cardiovascular disease in HIV-infected patients and relationship to highly active antiretroviral therapy. Circulation 2008; 118:e29-e35.
- 521. Worm SW, Sabin C, Weber R, Reiss P, El-Sadr W, Dabis F, et al. Risk of myocardial infarction in patients with HIV infection exposed to specific individual antiretroviral drugs from the 3 major drug classes: the data collection on adverse events of anti-HIV drugs (D:A:D) study. J Infect Dis 2010; 201:318-330.
- 522. Rasmussen LD, Engsig FN, Christensen H, Gerstoft J, Kronborg G, Pedersen C, et al. Risk of cerebrovascular events in persons with and without HIV: a Danish nationwide population-based cohort study. AIDS 2011; 25:1637-1646.
- 523. Lichtenstein KA, Armon C, Buchacz K, Chmiel JS, Buckner K, Tedaldi EM, et al. Low CD4+ T cell count is a risk factor for cardiovascular disease events in the HIV outpatient study. Clin Infect Dis 2010; 51:435-447.
- 524. Bedimo RJ, Westfall AO, Drechsler H, Vidiella G, Tebas P. Abacavir use and risk of acute myocardial infarction and cerebrovascular events in the highly active antiretroviral therapy era. Clin Infect Dis 2011; 53:84-91.
- High KP, Brennan-Ing M, Clifford DB, Cohen MH, Currier J, Deeks SG, et al. HIV and aging: state ofknowledge and areas of critical need for research. A report to the NIH Office of AIDS Research by the HIV and Aging Working Group. J Acquir Immune Defic Syndr 2012; 60 (Suppl 1):S1-18.
- 526. Aberg JA. Aging, inflammation, and HIV infection. Top Antivir Med 2012; 20:101-105.

- 527. Deeks SG, Verdin E, McCune JM. Immunosenescence and HIV. Curr Opin Immunol 2012; 24:501-506.
- 528. Haubrich RH, Riddler SA, DiRienzo AG, Komarow L, Powderly WG, Klingman K, et al. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. AIDS 2009; 23:1109-1118.
- 529. McComsey GA, Kitch D, Sax PE, Tebas P, Tierney C, Jahed NC, et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricitabine with atazanavir-ritonavir or efavirenz: ACTG Study A5224s. Clin Infect Dis 2011; 53:185-196.
- 530. Kolta S, Flandre P, Van PN, Cohen-Codar I, Valantin MA, Pintado C, et al. Fat tissue distribution changes in HIV-infected patients treated with lop-inavir/ritonavir. Results of the MONARK trial. Curr HIV Res 2011; 9:31-39.
- 531. Rockstroh JK, Lennox JL, DeJesus E, Saag MS, Lazzarin A, Wan H, et al. Longterm treatment with raltegravir or efavirenz combined with tenofovir/emtricitabine for treatment-naive human immunodeficiency virus-1-infected patients: 156-week results from STARTMRK. Clin Infect Dis 2011; 53:807-816.
- 532. Falutz J, Mamputu JC, Potvin D, Moyle G, Soulban G, Loughrey H, et al. Effects of tesamorelin (TH9507), a growth hormone-releasing factor analog, in human immunodeficiency virus-infected patients with excess abdominal fat: a pooled analysis of two multicenter, double-blind placebo-controlled phase 3 trials with safety extension data. J Clin Endocrinol Metab 2010; 95:4291-4304.
- 533. Guaraldi G, Orlando G, De Fazio D, De Lorenzi I, Rottino A, De Santis G, et al. Comparison of three different interventions for the correction of HIV-associated facial lipoatrophy: a prospective study. Antivir Ther 2005; 10:753-759.
- 534. Lo J, You SM, Canavan B, Liebau J, Beltrani G, Koutkia P, et al. Low-dose physiological growth hormone in patients with HIV and abdominal fat accumulation: a randomized controlled trial. JAMA 2008; 300:509-519.
- 535. Moyle GJ, Lysakova L, Brown S, Sibtain N, Healy J, Priest C, et al. A randomized open-label study of immediate versus delayed polylactic acid injections for the cosmetic management of facial lipoatrophy in persons with HIV infection. HIV Med 2004; 5:82-87.
- 536. McComsey GA, Tebas P, Shane E, Yin MT, Overton ET, Huang JS, et al. Bone disease in HIV infection: a practical review and recommendations for HIV care providers. Clin Infect Dis 2010; 51:937-946.
- 537. Brown TT, Qaqish RB. Antiretroviral therapy and the prevalence of osteopenia and osteoporosis: a meta-analytic review. AIDS 2006; 20:2165-2174.

- 538. Haskelberg H, Carr A, Emery S. Bone turnover markers in HIV disease. AIDS Rev 2011; 13:240-250.
- 539. Yong MK, Elliott JH, Woolley IJ, Hoy JF. Low CD4 count is associated with an increased risk of fragility fracture in HIV-infected patients. J Acquir Immune Defic Syndr 2011; 57:205-210.
- 540. McComsey GA, Kitch D, Daar ES, Tierney C, Lahed NC, Tebas P, et al. Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir: Aids Clinical Trials Group A5224s, a substudy of ACTG A5202. J Infect Dis 2011; 203:1791-1801.
- 541. Stellbrink HJ, Orkin C, Arribas JR, Compston J, Gerstoft J, van Wijngaerden E, et al. Comparison of changes in bone density and turnover with abacavirlamivudine versus tenofovir-emtricitabine in HIV-infected adults: 48-week results from the ASSERT study. Clin Infect Dis 2010; 51:963-972.
- 542. Mulligan K, Glidden D, Gonzales P, Ramirez-Cardich ME, Liu A, Namwongprom S, et al. Effects of FTC/TDF on bone mineral density in seronegative men from 4 continents: DEXA Results of the global iPrEx study. 18th Conference on Retroviruses and Opportunistic Infections (CROI).Boston, MA, February 27-March 2, 2011 Abstract No 94LB.
- 543. Liu A, Vittinghoff E, Sellmeyer D, Irvin R, Mulligan K, Mayer K, et al. Bone mineral density loss in HIV- men participating in a tenofovir pre-exposure prophylasis clinical trial in San Francisco. PLoS One 2011; 6:e23688.
- 544. Grupo de expertos del Plan Nacional sobre el Sida y Gesida. Documento de consenso sobre alteraciones osteoarticulares en la infección por el VIH. Enferm Infecc Microbiol Clin 2011; 29:515-23. Disponible en: www.gesida.seimc.org/pcientifica/fuentes/DcyRc/gesidadcyrc2010-altoseas.pdf (Acceso 15.12.2012)
- 545. Tuset M, Miró JM, Codina C, Ribas J, (Editores). Guía de interacciones farmacológicas en VIH. Disponible en: www.interaccionesvih.com (Acceso 14.12.2011)
- 546. Evans-Jones JG, Cottle LE, Back DJ, Gibbons S, Beeching NJ, Carey PB, et al. Recognition of risk for clinically significant drug interactions among HIV-infected patients receiving antiretroviral therapy. Clin Infect Dis 2010; 50:1419-1421.
- 547. Dickinson L, Khoo S, Back D. Pharmacokinetics and drug-drug interactions of antiretrovirals: an update. Antiviral Res 2010; 85:176-189.
- 548. Back D, Gibbons S, Wilkins E, Burger D, Shapiro J, Marzolini C et al. HIV Drug Interactions website. Disponible e: www.hiv-druginteractions.org (Acceso 15.12.2012)

- 549. Pham PA, Flexner C. Emerging antiretroviral drug interactions. J Antimicrob Chemother 2011; 66:235-239.
- 550. Josephson F. Drug-drug interactions in the treatment of HIV infection: focus on pharmacokinetic enhancement through CYP3A inhibition. J Intern Med 2010; 268:530-539.
- 551. Jimenez-Nacher I, Alvarez E, Morello J, Rodriguez-Novoa S, de AS, Soriano V. Approaches for understanding and predicting drug interactions in human immunodeficiency virus-infected patients. Expert Opin Drug Metab Toxicol 2011; 7:457-477.
- 552. Cohen C, Shamblaw D, Ruane P, Lion R, DeJesus E, Liu H et al. Single-tablet, fixed-dose regimen of elvitegravir/emtricitabine/tenofovir disoproxil fumarate/GS-9350 achieves a high rate of virologic suppression and GS-9350 is an effective booster. Program and abstracts of the 17th Conference on Retroviruses and Opportunistic Infections, San Francisco, February 27-March 2, 2010. Abstract 58LB.
- 553. German P, Warren D, West S, Hui J, Kearney BP. Pharmacokinetics and bioavailability of an integrase and novel pharmacoenhancer-containing single-tablet fixed-dose combination regimen for the treatment of HIV. J Acquir Immune Defic Syndr 2010; 55:323-329.
- 554. Mathias A, Liu HC, Warren D, Sekar V, Kearney BP. Relative bioavailability and pharmacokinetics of Darunavir when boosted with the pharmacoenhancer GS-9350 versus ritonavir. Program and abstracts of the 11th International Workshop on Clinical Pharmacology of HIV Therapy, Sorrento, April 7-9, 2010. Abstract 28.
- 555. Mathias AA, German P, Murray BP, Wei L, Jain A, West S, et al. Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. Clin Pharmacol Ther 2010; 87:322-329.
- 556. Ramanathan S, Warren D, Wei L, Kearney B. Pharmacokinetic boosting of Atazanavir with the pharmacoenhancer GS-9350 versus ritonavir. Program and abstracts of the 49th Interscience Conference on Antimicrobial Agents and Chemotherapy, San Francisco, September 12-15, 2009. Abstract A1-130.
- 557. Stribild® (elvitegravir, cobicistat, tenofovir, emtricitabina) Gilead Sciences, Inc. Foster City, CA. Issued: August 2012. Disponible en: http://www.gilead.com/pdf/stribild_pi.pdf (Acceso 18/11/2012).
- 558. Ray AS, Tong L, Robinson LK, Kearney B, Rhodes GR. Role of intestinal absorption in increased tenofovir exposure when tenofovir disoproxil fumarate is coadministered with atazanavir or lopinavir/ritonavir. Program and abstracts of the 7th International Workshop on Clinical Pharmacology of HIV Therapy, Lisbon, April 20-22, 2006. Abstract 49.

- 559. Ray AS, Cihlar T, Robinson LK, Tong L, Vela JE, Wieman ML, et al. Mechanism of active tubular secretion of tenofovir and potential for a renal drug-drug interactions with HIV protease inhibitors. Program and abstracts of the 7th International Workshop on Clinical Pharmacology of HIV Therapy, Lisbon, April 20-22, 2006. Abstract 39.
- 560. Crane h, Harrington R, Van Rompaey SE, Kitahata M. Didanosine and lower baseline body weight are associated with declining renal function among patients receiving tenofovir. Program and abstracts of the 13th Conference on Retroviruses and Opportunistic Infections, Denver, February 5-8, 2006. Abstract 780.
- 561. Jao J, Wyatt CM. Antiretroviral medications: adverse effects on the kidney. Adv Chronic Kidney Dis 2010; 17:72-82.
- 562. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G. Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions. Clin Infect Dis 2006; 42:283-290.
- 563. Kearney BP, Mathias A, Mittan A, Sayre J, Ebrahimi R, Cheng AK. Pharmacokinetics and safety of tenofovir disoproxil fumarate on coadministration with lopinavir/ritonavir. J Acquir Immune Defic Syndr 2006; 43:278-283.
- 564. Fux C, Opravil M, Cavassini M, Calmy A, Flepp M, Gurtner-Delafuente V, et al. Tenofovir and PI use are associated with an increased prevalence of proximal renal tubular dysfunction in the Swiss HIV cohort study. Program and abstracts of the 16th Conference on Retroviruses and Opportunistic Infections, Montreal, February 8-11, 2009. Abstract 743.
- 565. Chaisiri K, Bowonwatanuwong C, Kasettratat N, Kiertiburanakul S. Incidence and risk factors for tenofovir-associated renal function decline among Thai HIV-infected patients with low-body weight. Curr HIV Res 2010; 8:504-509.
- 566. Lee L, Soon GH, Shen P, Young EL, Flexner C, Pham P. Effect of efavirenz and darunavir/ritonavir on bilirubun levels in healthy adult volunters: role of induction of UGT1A1 and bile efflux transporters. Program and abstracts of the 11th International Workshop on Clinical Pharmacology of HIV Therapy, Sorrento, April 7-9, 2010. Abstract 27.
- 567. Michaud V, Ogburn E, Thong N, Aregbe AO, Quigg TC, Flockhart DA, et al. Induction of CYP2C19 and CYP3A activity following repeated administration of efavirenz in healthy volunteers. Clin Pharmacol Ther 2012; 91:475–482.
- 568. Dickinson L, Khoo S, Back D. Pharmacokinetic evaluation of etravirine. Expert Opin Drug Metab Toxicol 2010; 6:1575-1585.
- 569. Schöller-Gyüre M, Kakuda TN, Raoof A, de Smedt G, Hoetelmans RM. Clinical pharmacokinetics and pharmacodynamics of etravirine. Clin Pharmacokinet 2009;48(9):561-574.

- 570. Kakuda TN, Scholler-Gyure M, Hoetelmans RM. Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin Pharmacokinet 2011; 50:25-39.
- 571. Rilpivirina (Edurant®) Gilead Sciences. Ultima revisión RxList 27/8/2012. Disponible en: http://www.rxlist.com/edurant-drug/side-effects-interactions.htm (Acceso 18/11/2012).
- 572. Kharasch ED, Mitchell D, Coles R, Blanco R. Rapid clinical induction of hepatic cytochrome P4502B6 activity by ritonavir. Antimicrob Agents Chemother 2008; 52:1663-1669.
- 573. Yeh RF, Gaver VE, Patterson KB, Rezk NL, Baxter-Meheux F, Blake MJ, et al. Lopinavir/ritonavir induces the hepatic activity of cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP1A2 but inhibits the hepatic and intestinal activity of CYP3A as measured by a phenotyping drug cocktail in healthy volunteers. J Acquir Immune Defic Syndr 2006; 42:52-60.
- 574. Vourvahis M, Dumond J, Patterson K, Rezk N, Tien H, Li J et al. Effects of tipranavir/ritonavir (TPV/r) on the activity of cytochrome p450 (CYP) enzymes 1A2, 2C9, and 2D6 in healthy volunteers. Program and abstracts of the 8th International Workshop on Clinical Pharmacology of HIV Therapy, Budapest, April 16-18, 2007. Abstract 52.
- 575. Carter NJ, Keating GM. Maraviroc. Drugs 2007; 67:2277-2288.
- 576. Hyland R, Dickins M, Collins C, Jones H, Jones B. Maraviroc: in vitro assessment of drug-drug interaction potential. Br J Clin Pharmacol 2008; 66:498-507.
- 577. Yost R, Pasquale TR, Sahloff EG. Maraviroc: a coreceptor CCR5 antagonist for management of HIV infection. Am J Health Syst Pharm 2009; 66:715-726.
- 578. Perry CM. Maraviroc: a review of its use in the management of CCR5-tropic HIV-1 infection. Drugs 2010; 70:1189-1213.
- 579. Raltegravir. Merck Sharp & Dohme Ltd. Hertfordshire, Reino Unido. Septiembre 2010. Disponible en: www.ema.europa.eu/docs/es_ES/document_library/EPAR_Product_Informat_ion/human/000860/WC500037405.pdf (Acceso 15.12.2012).
- 580. Burger DM. Raltegravir: a review of its pharmacokinetics, pharmacology and clinical studies. Expert Opin Drug Metab Toxicol 2010; 6:1151-1160.
- 581. Croxtall JD, Lyseng-Williamson KA, Perry CM. Raltegravir. Drugs 2008; 68:131-138.

- 582. Evering TH, Markowitz M. Raltegravir (MK-0518): an integrase inhibitor for the treatment of HIV-1. Drugs Today (Barc) 2007; 43:865-877.
- 583. Brainard DM, Wenning LA, Stone JA, Wagner JA, Iwamoto M. Clinical pharmacology profile of raltegravir, an HIV-1 integrase strand transfer inhibitor. J Clin Pharmacol 2011; 51:1376-1402.
- 584. Abel S, Ridgway C, Hamlin J, Davis J. An open, parallel group study to compare the pharmacokinetics, safety and toleration of a single oral dose of Maraviroc in subjects with mild and moderate hepatic impairment with subjects with normal hepatic function. Program and abstracts of the 8th International Workshop on Clinical Pharmacology of HIV Therapy, Budapest, April 16-18, 2007. Abstract 8.
- 585. Agarwala S, Eley T, Child M, Wang Y, Persson A, Filoramo D et al. Pharmacokinetics of Atazanavir in severely renally impaired subjects including those on hemodialysis. Program and abstracts of the 8th International Workshop on Clinical Pharmacology of HIV Therapy, Budapest, April 16-18, 2007. Abstract 2
- 586. Barreiro P, Rodriguez-Novoa S, Labarga P, Ruiz A, Jimenez-Nacher I, Martin-Carbonero L, et al. Influence of liver fibrosis stage on plasma levels of antiretroviral drugs in HIV-infected patients with chronic hepatitis C. J Infect Dis 2007; 195:973-979.
- 587. Bossi P, Peytavin G, Lamotte C, Calvez V, Bricaire F, Costagliola D, et al. High indinavir plasma concentrations in HIV-positive patients co-infected with hepatitis B or C virus treated with low doses of indinavir and ritonavir (400/100 mg twice a day) plus two nucleoside reverse transcriptase inhibitors. AIDS 2003; 17:1108-1110.
- 588. Breilh D, Guinguene S, de Ledinghen V, Toutain J, Pellegrin JL, Trimoulet P, et al. Pharmacokinetics of Boosted PI and NNRTI in HCV/HIV-co-infected Patients. Program and abstracts of the 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, February 25-28, 2007. Abstract 946.
- 589. Chen L, Sabo JP, Philip E, Mao Y, Norris SH, MacGregor TR, et al. Steady-state disposition of the nonpeptidic protease inhibitor tipranavir when coadministered with ritonavir. Antimicrob Agents Chemother 2007; 51:2436-2444.
- 590. Damle B, Hewlett D, Jr., Hsyu PH, Becker M, Petersen A. Pharmacokinetics of nelfinavir in subjects with hepatic impairment. J Clin Pharmacol 2006; 46:1241-1249.
- 591. Dominguez S, Benhamou Y, Katlama C, Peytavin G. Nevirapine plasma concentrations in HIV/HCV and HIV infected patients, a case control study: NEVADOSE. Program and abstracts of the 7th International Workshop on Clinical Pharmacology of HIV Therapy, Lisbon, April 20-22, 2006. Abstract 21.

- 592. Dragovic G, Smith CJ, Jevtovic D, Grbovic L, Ypole M. The impact of HCV/HIV co-infection on nevirapine plasma concentration in a cohort of patients in Belgrade. Program and abstracts of the 8th International Workshop on Clinical Pharmacology of HIV Therapy, Budapest, April 16-18, 2007. Abstract 4
- 593. Gatti F, Nasta P, Matti A, Loregian A, Pagni S, Prestini K, et al. Pharmacokinetics of atazanavir in HIV-1-HCV co-infected patients. Program and abstracts of the 4th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, July 22-25, 2007. Abstract WEPEB008.
- 594. Gatti F, Pagni S, Nasta P, Boldrin C, Matti A, Loregian A et al. Potential role of TDM in dosing protease inhibitors in HIV-HCV co-infected patients with or without cirrhosis. Program and abstracts of the 25th International Congress of Chemotherapy, Munich, March 31 April 3, 2007 Abstract.
- 595. Gill MJ, Ostrop NJ, Fiske WD, Brennan JM. Efavirenz dosing in patients receiving continuous ambulatory peritoneal dialysis. AIDS 2000; 14:1062-1064.
- 596. Guaraldi G, Cocchi S, Motta A, Ciaffi S, Codeluppi M, Bonora S, et al. A pilot study on the efficacy, pharmacokinetics and safety of atazanavir in patients with end-stage liver disease. J Antimicrob Chemother 2008; 62:1356-1364.
- 597. Gupta SK, Rosenkranz SL, Cramer YS, Koletar SL, Szczech LA, Amorosa V, et al. The pharmacokinetics and pharmacogenomics of efavirenz and lop-inavir/ritonavir in HIV-infected persons requiring hemodialysis. AIDS 2008; 22:1919-1927.
- 598. Hermida Donate JM, Quereda C, Moreno A, Hernandez B, Rodriguez MA, Dronda F, et al. Efficacy and safety of atazanavir in HIV-infected patients with liver cirrhosis. Program and abstracts of the 4th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, July 22-25, 2007. Abstract MOPEB060.
- 599. Izzedine H, Launay-Vacher V, Jullien V, Aymard G, Duvivier C, Deray G. Pharmacokinetics of tenofovir in haemodialysis. Nephrol Dial Transplant 2003; 18:1931-1933.
- 600. Jayasekara D, Aweeka FT, Rodriguez R, Kalayjian RC, Humphreys MH, Gambertoglio JG. Antiviral therapy for HIV patients with renal insufficiency. J Acquir Immune Defic Syndr 1999; 21:384-95.
- 601. Katsounas A, Frank A, Klinker H, Langmann P. Efavirenz-therapy in HIV-patients with underlying liver disease: importance of continuous TDM of EFV. Eur J Med Res 2007; 12:331-336.
- 602. Kearney BP, Yale K, Shah J, Zhong L, Flaherty JF. Pharmacokinetics and dosing recommendations of tenofovir disoproxil fumarate in hepatic or renal impairment. Clin Pharmacokinet 2006; 45:1115-1124.

- 603. King JR, Acosta EP. Tipranavir: a novel nonpeptidic protease inhibitor of HIV. Clin Pharmacokinet 2006; 45:665-682.
- 604. Mallolas J, Perez-Elias MJ, Ortega E, Gutiérrez F, Felizarta F, Bleiber G, et al. Fosamprenavir / ritonavir dose adjustment for patients with mild and moderate hepatic impairment (APV10017). Program and abstracts of the 8th International Workshop on Clinical Pharmacology of HIV Therapy, Budapest, April 16-18, 2007. Abstract 1.
- 605. Micheli V, Regazzi M, Dickinson L, Meraviglia P, Villani P, Khoo SH, et al. Lop-inavir/ritonavir pharmacokinetics in HIV/HCV-coinfected patients with or without cirrhosis. Ther Drug Monit 2008; 30:306-313.
- 606. Molto J, Valle M, Blanco A, Negredo E, Delavarga M, Miranda C et al. Lop-inavir/ritonavir pharmacokinetics in HIV and hepatitis C virus co-infected patients without liver function impairment: influence of liver fibrosis. Clin Pharmacokinet 2007; 46:85-92.
- 607. Molto J, Negredo E, Kaeser B, Gel S, Abt M, Becker M, et al. Nelfinavir pharmacokinetics in patients with HIV mono- and HIV-HCV co-infection. Program and abstracts of the 8th International Workshop on Clinical Pharmacology of HIV Therapy, Budapest, April 16-18 2007. Abstract 9
- 608. Morello J, García-Gascó P, Blanco F, Rodriguez-Novoa S, Barreiro P, Maida I, et al. Higher plasma levels of Tipranavir in patients with more significant liver fibrosis and risk of liver toxicity. Program and abstracts of the 8th International Workshop on Clinical Pharmacology of HIV Therapy, Budapest, April 16-18, 2007. Abstract 35.
- 609. Paci-Bonaventure S, Hafi A, Vincent I, Quertainmont Y, Goujard C, Charpentier B, et al. Lack of removal of nelfinavir during a haemodialysis session in an HIV-1 infected patient with hepatic and renal insufficiency. Nephrol Dial Transplant 2001; 16:642-643.
- 610. Peng JZ, Pulido F, Causemaker SJ, Li J, Lorenzo A, Cepeda C, et al. Pharmaco-kinetics of lopinavir/ritonavir in HIV/hepatitis C virus-coinfected subjects with hepatic impairment. J Clin Pharmacol 2006; 46:265-274.
- 611. Pereira SA, Caixas U, Branco T, Germano I, Lampreia F, Papoila AL, et al. Efavirenz concentrations in HIV-infected patients with and without viral hepatitis. Br J Clin Pharmacol 2008; 66:551-555.
- 612. Pineda JA, Santos J, Rivero A, bdel-Kader L, Palacios R, Camacho A, et al. Liver toxicity of antiretroviral combinations including atazanavir/ritonavir in patients co-infected with HIV and hepatitis viruses: impact of pre-existing liver fibrosis. J Antimicrob Chemother 2008; 61:925-932.
- 613. Regazzi M, Tinelli C, Villani P, Cusato M, De Silvestri A, Zucchi P, et al. Predictability of individual Nelfinavir concentrations at different time points for total

- systemic exposure in HIV and HIV/HCV co-infected patients, with and without cirrhosis. Program and abstracts of the 6th International Workshop on Clinical Pharmacology of HIV Therapy, Quebec, April 28-30, 2005. Abstract 61.
- 614. Schöller-Gyüre M, Kakuda NT, De Smedt G, Woodfall B, Berckmans C, Peeters M, et al. Pharmacokinetics of TMC125 in HIV-negative volunteers with mild and moderate hepatic impairment. Program and abstracts of the 47th Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, September 17-20, 2007. Abstract A-1428.
- 615. Sekar VJ, Spinosa-Guzman S, De Paepe E, Stevens T, Tomaka F, De Pauw M, et al. Pharmacokinetics of multiple-dose darunavir in combination with low-dose ritonavir in individuals with impaired hepatic function. Program and abstracts of the 4th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Sydney, July 22-25, 2007. Abstract TUPDB05
- 616. Spagnuolo V, Gentilini G, De Bona A., Galli L, Uberti-Foppa C, Soldarini A, et al. Liver function parameters in HIV/HCV co-infected patients treated with amprenavir and ritonavir and correlation with plasma levels. New Microbiol 2007; 30:279-282.
- 617. Taburet AM, Naveau S, Zorza G, Colin JN, Delfraissy JF, Chaput JC, et al. Pharmacokinetics of zidovudine in patients with liver cirrhosis. Clin Pharmacol Ther 1990; 47:731-739.
- 618. Tebas P, Bellos N, Lucasti C, Richmond G, Godofsky E, Patel I, et al. Enfuvirtide does not require dose-adjustment in patients with chronic renal failure: the results of a pharmacokinetic study on enfuvirtide in HIV-1-infected patients with inpaired renal function (NP17586). Program and abstracts of the 14th Conference on Retroviruses and Opportunistic Infections, Los Angeles, February 25-28, 2007. Abstract 572.
- 619. Veronese L, Rautaureau J, Sadler BM, Gillotin C, Petite JP, Pillegand B, et al. Single-dose pharmacokinetics of amprenavir, a human immunodeficiency virus type 1 protease inhibitor, in subjects with normal or impaired hepatic function. Antimicrob Agents Chemother 2000; 44:821-826.
- 620. Wyles DL, Gerber JG. Antiretroviral drug pharmacokinetics in hepatitis with hepatic dysfunction. Clin Infect Dis 2005; 40:174-181.
- 621. Crespo M, Pou L, Esteban JI, Falco V, Ribera E, López R et al. Early monitoring of ribavirin serum concentration is not useful to optimize hepatitis C virus treatment in HIV-coinfected patients. Antivir Ther 2007; 12:1217-1223.
- 622. Vouvahis M, Fang J, Checcio T, Weatherley B, Heera J. Pharmacokinetics, safety, and tolerability of maraviroc in subjects with various degrees of renal impairment and normal renal function. Program and abstracts of the 11th International Workshop on Clinical Pharmacology of HIV Therapy, Sorrento, April 7-9, 2010. Abstract 15.

- 623. McFadyen L, Weatherley B, Vouvahis M. Population modelling of maraviroc pharmacokinetic data when administered with and without saquinavir/ritonavir in subjects with renal dysfunction. Program and abstracts of the 11th International Workshop on Clinical Pharmacology of HIV Therapy, Sorrento, April 7-9, 2010. Abstract 43.
- 624. Molto J, Sanz-Moreno J, Valle M, Cedeño S, Bonal J, Bouarich H, et al. Effect of hemodialysis in raltegravir clearance in HIV-infected patients with end stage renal disease. Program and abstracts of the 11th International Workshop on Clinical Pharmacology of HIV Therapy, Sorrento, April 7-9, 2010. Abstract 7.
- 625. Tommasi C, Nicastri E, Gallo AL, Tempestilli M, Bellagamba R, Fezza R, et al. Raltegravir and darunavir plasma pharmacokinetics in HIV-1 infected patients with advanced liver disease. Program and abstracts of the 11th International Workshop on Clinical Pharmacology of HIV Therapy, Sorrento, April 7-9, 2010. Abstract 10.
- 626. Von Hentig N, Khaykin P, Stephan C, Nisius G, Bickel M, Haberl A, et al. Hepatitis/HIV co-infection without hepatic impairment does not alter lopinavir plasma concentrations in HIV-1 infeted adults. 11th International Workshop on Clinical Pharmacology of HIV Therapy, Sorrento, April 7-9, 2010. Abstract 57.
- 627. Chang L, Kreuzer C, Farha R, Abr M, Baher L, Tebas P, et al. Effect of moderate liver impairment on the multiple dose pharmacokinetics of ritonavir-boosted saquinavir in HIV patient. 18th International AIDS Conference, Vienna, July 18-23, 2010. Abstract WEPE0093.
- 628. Sekar V, Spinosa-Guzman S, De Paepe E., Stevens T, Tomaka F, De Pauw M. et al. Pharmacokinetics of multiple-dose darunavir in combination with low-dose ritonavir in individuals with mild-to-moderate hepatic impairment. Clin Pharmacokinet 2010; 49:343-350.
- 629. Perez-Elias MJ, Gatell JM, Flores J, Santos J, Vera-Medez F, Clotet B, et al. Short-term effect of ritonavir-boosted atazanavir in hepatitis B and/or C co-infected, treatment-experienced HIV patients. HIV Clin Trials 2009; 10:269-275.
- 630. Rodriguez JM, Hermida JM, Casado JL, Quereda C, Moreno A, Dronda F, et al. The use of atazanavir in HIV-infected patients with liver cirrhosis: lack of hepatotoxicity and no significant changes in bilirubin values or model for end-stage liver disease score. AIDS 2011; 25:1006-1009.
- 631. Regazzi M, Villani P, Gulminetti R, Cusato M, Brandolini M, Tinelli C, et al. Therapeutic monitoring and variability of atazanavir in HIV-infected patients, with and without HCV coinfection, receiving boosted or unboosted regimens. Ther Drug Monit 2011; 33:303-308.

- 632. Calza L, Mosca L, Pocaterra D, Piergentili B, Colangeli V, Manfredi R, et al. Assessing the impact of hepatitis C virus coinfection on lopinavir/ritonavir trough concentrations in HIV-infected patients. Eur J Clin Pharmacol 2011; 67:143-149.
- 633. Crauwels H, Stevens M, Buelens A, Boven K, van Heeswijk R, De La Rosa G. Pharmacokinetics of Rilpivirine, a next-generation non-nucleoside reverse transcriptase Inhibitor (NNRTI), in patients with mild or moderate hepatic impairment. Program and abstracts of the 13th European AIDS Conference. Belgrade, Serbia, Oct 12-15, 2011. Abstract PE6.1/2 (BPD1/2).
- 634. Hernández-Novoa B, Moreno A, Perez-Elias M, et al. Multiple-dose pharmacokinetics of Raltegravir in patients co-infected with HIV/HCV with and without advanced (Child-Pugh grade C) hepatic cirrhosis. Program and abstracts of the 19th Conference on Retroviruses and Opportunistic Infections (CROI), Seattle, WA, USA, March 5-8, 2012. Abstract 609.
- 635. German P, Wei X, Mizuno V, Cheng A, Kearney, Mathias A. Pharmacokinetics of elvitegravir and cobicistat in subjects with severe renal impairment. Program and abstracts of the 13th Internacional Workshop on Clinical Pharmacology of HIV Therapy. Barcelona, Spain, April 16-18, 2012. Abstract: P-38.
- 636. Ramanathan S, Rhee M, Shen G, Custodio J, Kearney BP. Pharmacokinetics and safety of boosted-Elvitegravir in subjects with hepatic impairment. Program and abstracts of the 13th Internacional Workshop on Clinical Pharmacology of HIV Therapy. Barcelona, Spain, April 16-18, 2012. Abstract: P-40.
- 637. Back D, Khoo S,Seden K, Gibbons S, Burger D, Dietrich D, Foster G, Zoulim F (editorial board). University of Liverpool. Disponible en: http://www.hep-druginteractions.org/ (Acceso: 16/11/2012).
- 638. Berenguer J, Calleja JL, Esteban R, Fernández MJ, Forns X, González J, et al. Criterios y recomendaciones generales para el tratamiento con boceprevir y telaprevir de la hepatitis crónica C en pacientes infectados por el VIH, en trasplantados de hígado y en población pediátrica. Publicado: 26/7/2012. Disponible en: http://www.aemps.gob.es/medicamentosUsoHumano/medSituacionesEspeciales/docs/criterios-VHC-off-label.pdf (Acceso: 16/11/2012).
- 639. Bonacini M, Louie S, Bzowej N, Wohl AR. Survival in patients with HIV infection and viral hepatitis B or C: a cohort study. AIDS 2004; 18:2039-2045.
- 640. Macias J, Berenguer J, Japon MA, Giron JA, Rivero A, Lopez-Cortes LF, et al. Fast fibrosis progression between repeated liver biopsies in patients coinfected with human immunodeficiency virus/hepatitis C virus. Hepatology 2009; 50:1056-1063.
- 641. Macias J, Mira JA, López-Cortes LF, Santos I, Girón-Gonzalez JA, González-Serrano M, et al. Antiretroviral therapy based on protease inhibitors as a protective factor against liver fibrosis progression in patients with chronic hepatitis C. Antivir Ther 2006; 11:839-846.

- 642. Merchante N, Girón-González JA, González-Serrano M, Torre-Cisneros J, Garcia-Garcia JA, Arizcorreta A, et al. Survival and prognostic factors of HIV-infected patients with HCV-related end-stage liver disease. AIDS 2006; 20:49-57.
- 643. Qurishi N, Kreuzberg C, Luchters G, Effenberger W, Kupfer B, Sauerbruch T, et al. Effect of antiretroviral therapy on liver-related mortality in patients with HIV and hepatitis C virus coinfection. Lancet 2003; 362:1708-1713.
- 644. Pineda JA, Garcia-Garcia JA, Aguilar-Guisado M, Ríos-Villegas MJ, Ruiz-Morales J, Rivero A, et al. Clinical progression of hepatitis C virus-related chronic liver disease in human immunodeficiency virus-infected patients undergoing highly active antiretroviral therapy. Hepatology 2007;46:622-630.
- 645. Soriano V, Puoti M, Peters M, Benhamou Y, Sulkowski M, Zoulim F, et al. Care of HIV patients with chronic hepatitis B: updated recommendations from the HIV-Hepatitis B Virus International Panel. AIDS 2008; 22:1399-1410.
- 646. Carr A, Cooper DA. Adverse effects of antiretroviral therapy. Lancet 2000; 356:1423-1430.
- 647. Reisler RB, Han C, Burman WJ, Tedaldi EM, Neaton JD. Grade 4 events are as important as AIDS events in the era of HAART. J Acquir Immune Defic Syndr 2003; 34:379-386.
- 648. Rivero A, Mira JA, Pineda JA. Liver toxicity induced by non-nucleoside reverse transcriptase inhibitors. J Antimicrob Chemother 2007; 59:342-346.
- 649. Núñez M. Hepatotoxicity of antiretrovirals: incidence, mechanisms and management. J Hepatol 2006;44 (1 Suppl):S132-S139.
- 650. Sabin CA. Pitfalls of assessing hepatotoxicity in trials and observational cohorts. Clin Infect Dis 2004;38 (Suppl 2):S56-S64.
- 651. AIDS Clinical Trials Group. Table of grading severity of adult adverse experiences. Rockville, MD: US Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, 1996.
- 652. Sulkowski MS, Thomas DL, Chaisson RE, Moore RD. Hepatotoxicity associated with antiretroviral therapy in adults infected with human immunodeficiency virus and the role of hepatitis C or B virus infection. JAMA 2000; 283:74-80.
- 653. Aranzabal L, Casado JL, Moya J, Quereda C, Diz S, Moreno A, et al. Influence of liver fibrosis on highly active antiretroviral therapy-associated hepatotoxicity in patients with HIV and hepatitis C virus coinfection. Clin Infect Dis 2005; 40:588-593.
- 654. Pineda JA, Neukam K, Mallolas J, López-Cortés LF, Cartón JA, Domingo P, et al. Hepatic safety of efavirenz in HIV/hepatitis C virus-coinfected patients with advanced liver fibrosis. J Infect 2012; 64: 204-11.

- 655. Macías J, Neukam K, Portilla J, Iribarren JA, de los Santos I, Rivero A, et al. Liver tolerance of raltegravir-containing antiretroviral therapy in HIV-infected patients with chronic hepatitis C. J Antimicrob Chemother 2011; 66:1346-1350.
- 656. Neukam K, Mira JA, Ruiz-Morales J, Rivero A, Collado A, Torres-Cornejo A, et al. Liver toxicity associated with antiretroviral therapy including efavirenz or ritonavir-boosted protease inhibitors in a cohort of HIV/hepatitis C virus co-infected patients. J Antimicrob Chemother 2011; 66:2605-2614.
- 657. Merchante N, López-Cortés LF, Delgado-Fernández M, Ríos-Villegas MJ, Márquez-Solero M, Merino D, et al. Liver toxicity of antiretroviral combinations including fosamprenavir plus ritonavir 1400/100 mg once daily in HIV/hepatitis C virus-coinfected patients. AIDS Patient Care STDS 2011; 25:395-402.
- 658. Labarga P, Soriano V, Vispo ME, Pinilla J, Martin-Carbonero L, Castellares C, et al. Hepatotoxicity of antiretroviral drugs is reduced after successful treatment of chronic hepatitis C in HIV-infected patients. J Infect Dis 2007; 196:670-676.
- 659. Meynard JL, Lacombe K, Poirier JM, Legrand J, Morand-Joubert L, Girard PM. Influence of liver fibrosis stage on plasma levels of efavirenz in HIV-infected patients with chronic hepatitis B or C. J Antimicrob Chemother 2009; 63:579-584.
- 660. Pérez-Elías MJ, Morellon ML, Ortega E, Hernández-Quero J, Rodríguez-Torres M, Clotet B, et al. Pharmacokinetics of fosamprenavir plus ritonavir in human immunodeficiency virus type 1-infected adult subjects with hepatic impairment. Antimicrob Agents Chemother 2009; 53:5185-5196.
- 661. Iwamoto M, Wenning LA, Mistry GC, Petry AS, Liou SY, Ghosh K, et al. Atazanavir modestly increases plasma levels of raltegravir in healthy subjects. Clin Infect Dis 2008; 47:137-40.
- 662. Torriani FJ, Rodríguez-Torres M, Rockstroh JK, Lissen E, González-García J, Lazzarin A, et al. Peginterferon Alfa-2a plus ribavirin for chronic hepatitis C virus infection in HIV-infected patients. N Engl J Med 2004; 351:438-450.
- 663. Pérez-Olmeda M, Núñez M, Romero M, González J, Castro A, Arribas JR, et al. Pegylated IFN-alpha2b plus ribavirin as therapy for chronic hepatitis C in HIV-infected patients. AIDS 2003; 17:1023-1028.
- 664. Laguno M, Murillas J, Blanco JL, Martínez E, Miquel R, Sánchez-Tapias JM, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for treatment of HIV/HCV co-infected patients. AIDS 2004; 18:F27-F36.
- 665. Chung RT, Andersen J, Volberding P, Robbins GK, Liu T, Sherman KE, et al. Peginterferon Alfa-2a plus ribavirin versus interferon alfa-2a plus ribavirin for

- chronic hepatitis C in HIV-coinfected persons. N Engl J Med 2004; 351:451-459.
- 666. Carrat F, Bani-Sadr F, Pol S, Rosenthal E, Lunel-Fabiani F, Benzekri A, et al. Pegylated interferon alfa-2b vs standard interferon alfa-2b, plus ribavirin, for chronic hepatitis C in HIV-infected patients: a randomized controlled trial. JAMA 2004; 292:2839-2848.
- 667. EACS guidelines. Version 6.1; November 2012. Disponible en: www.europeanaidsclinicalsociety.org.
- 668. Sulkowski M, Pol S, Cooper C, Fainboim H, Slim J, Rivero A, et al. Boceprevir plus peginterferon/ribavirin for the treatment of HCV/HIV co-infected patients. Program and abstracts of the 49th Annual Meeting of the IDSA. Boston, October 20-23, 2011. Abstract LB 182a.
- 669. Sulkowski M, Sherman K, Soriano V, et al. Telaprevir in combination with peginterferon alfa-2a/rivabirin in HCV/HIV co-infected patients: SVR24 final study results. Program and abstracts of the 63rd Annual Meeting of the Amerjican Association for the Study of Liver Diseases (AASLD). Boston, MA, November 9-13, 2012. Abstract 54.
- 670. Soriano V, Mocroft A, Rockstroh J, Ledergerber B, Knysz B, Chaplinskas S, et al. Spontaneous viral clearance, viral load, and genotype distribution of hepatitis C virus (HCV) in HIV-infected patients with anti-HCV antibodies in Europe. J Infect Dis 2008; 198:1337-1344.
- 671. Shores NJ, Maida I, Soriano V, Núñez M. Sexual transmission is associated with spontaneous HCV clearance in HIV-infected patients. J Hepatol 2008; 49:323-328.
- 672. Gotz HM, van DG, Niesters HG, den Hollander JG, Thio HB, de Zwart O. A cluster of acute hepatitis C virus infection among men who have sex with menresults from contact tracing and public health implications. AIDS 2005; 19:969-974.
- 673. Santantonio T, Fasano M. Therapy of acute hepatitis C: a review of literature. Curr Pharm Des 2008; 14:1686-1689.
- 674. Jaeckel E, Cornberg M, Wedemeyer H, Santantonio T, Mayer J, Zankel M et al. Treatment of acute hepatitis C with interferon alfa-2b. N Engl J Med 2001; 345:1452-1457.
- 675. Vogel M, Nattermann J, Baumgarten A, Klausen G, Bieniek B, Schewe K, et al. Pegylated interferon-alpha for the treatment of sexually transmitted acute hepatitis C in HIV-infected individuals. Antivir Ther 2006; 11:1097-1101.
- 676. Soriano V, Puoti M, Sulkowski M, Cargnel A, Benhamou Y, Peters M et al. Care of patients coinfected with HIV and hepatitis C virus: 2007 updated recommendations from the HCV-HIV International Panel. AIDS 2007; 21:1073-1089.

- 677. The European AIDS Treatment Network (NEAT) Acute Hepatitis C Infection Consensus Panel. Acute hepatitis C in HIV-infected individuals: recommendations from the European AIDS Treatment Network (NEAT) consensus conference. AIDS 2011; 25: 399–409.
- 678. Alvarez D, Dieterich DT, Brau N, Moorehead L, Ball L, Sulkowski MS. Zidovudine use but not weight-based ribavirin dosing impacts anaemia during HCV treatment in HIV-infected persons. J Viral Hepat 2006; 13:683-689.
- 679. Lafeuillade A, Hittinger G, Chadapaud S. Increased mitochondrial toxicity with ribavirin in HIV/HCV coinfection. Lancet 2001; 357:280-281.
- 680. Moreno A, Quereda C, Moreno L, Pérez-Elías MJ, Muriel A, Casado JL, et al. High rate of didanosine-related mitochondrial toxicity in HIV/HCV-coinfected patients receiving ribavirin. Antivir Ther 2004; 9:133-138.
- 681. Bani-Sadr F, Carrat F, Pol S, Hor R, Rosenthal E, Goujard C et al. Risk factors for symptomatic mitochondrial toxicity in HIV/hepatitis C virus-coinfected patients during interferon plus ribavirin-based therapy. J Acquir Immune Defic Syndr 2005; 40:47-52.
- 682. Bani-Sadr F, Denoeud L, Morand P, Lunel-Fabiani F, Pol S, Cacoub P, et al. Early virologic failure in HIV-coinfected hepatitis C patients treated with the peginterferon-ribavirin combination: does abacavir play a role? J Acquir Immune Defic Syndr 2007; 45:123-125.
- 683. Vispo E, Barreiro P, Pineda JA, Mira JA, Maida I, Martin-Carbonero L, et al. Low response to pegylated interferon plus ribavirin in HIV-infected patients with chronic hepatitis C treated with abacavir. Antivir Ther 2008; 13:429-437.
- 684. Mira JA, López-Cortés LF, Barreiro P, Tural C, Torres-Tortosa M, de los Santos Gil I, et al. Efficacy of pegylated interferon plus ribavirin treatment in HIV/hepatitis C virus co-infected patients receiving abacavir plus lamivudine or tenofovir plus either lamivudine or emtricitabine as nucleoside analogue backbone. J Antimicrob Chemother 2008; 62:1365-1373.
- 685. Amorosa VK, Slim J, Mounzer K, Bruno C, Hoffman-Terry M, Dorey-Stein Z, et al. The influence of abacavir and other antiretroviral agents on virological response to HCV therapy among antiretroviral-treated HIV-infected patients. Antivir Ther 2010; 15:91-99.
- 686. Berenguer J, von Wichmann MA, Quereda C, Miralles P, Mallolas J, López-Aldeguer J et al. Effect of accompanying antiretroviral drugs on virological response to pegylated interferon and ribavirin in patients co-infected with HIV and hepatitis C virus. J Antimicrob Chemother 2011; 66:2843-2849.
- 687. Laufer N, Laguno M, Pérez I, Cifuentes C, Murillas J, Vidal F, et al. Abacavir does not influence the rate of virological response in HIV-HCV-coinfected patients treated with pegylated interferon and weight-adjusted ribavirin. Antivir Ther 2008; 13:953-957.

- 688. Quereda C, Corral I, Moreno A, Perez-Elias MJ, Casado JL, Dronda F, et al. Effect of treatment with efavirenz on neuropsychiatric adverse events of interferon in HIV/HCV-coinfected patients. J Acquir Immune Defic Syndr 2008; 49:61-63.
- 689. Rodríguez-Novoa S, Morello J, González M, Vispo E, Barreiro P, González-Pardo G, et al. Increase in serum bilirubin in HIV/hepatitis-C virus-coinfected patients on atazanavir therapy following initiation of pegylated-interferon and ribavirin. AIDS 2008; 22:2535-2537.
- 690. Rivero-Juárez A, Mira JA, Santos-Gil I, López-Cortés LF, Girón JA, Márquez M, et tal. Atazanavir-based therapy is associated with higher hepatitis C viral load in HIV type 1-infected subjects with untreated hepatitis C. AIDS Res Hum Retroviruses 2012, October 10. Epub ahead of print. PMID: 22966845.
- 691. Van Heeswijk R, Vandevoorde A, Boogaerts G, Vangeneugden T, De Paepe E, et al. Pharmacokinetic interactions between ARV agents and the investigational HCV protease inhibitor TVR in healthy volunteers. Program and abstracts of the 18th Conference on Retroviruses and Opportunistic Infections (CROI). Boston, MA, February 27-March 2, 2011. Abstract 119
- 692. Kakuda T, Leopold L, Nijs S, Vandevoorde A, Crauwels H, Bertelsen K, et al. Pharmacokinetic interaction between etravirine or rilpivirine and telaprevir in healthy volunteers: a randomised, two-way crossover trial. Program and abstracts of the 13th International Workshop on Clinical Pharmacology of HIV Therapy, April 16-18, 2012, Barcelona, Spain. Abstract O-18.
- 693. Kasserra C, Hughes E, Treitel M, Gupta S, O'Mara E. Clinical pharmacology of boceprevir: Metabolism, excretion, and drug-drug interactions. Program and abstracts of the 18th Conference on Retroviruses and Opportunistic Infections (CROI). Boston, MA, February 27-March 2, 2011 Abstract 118
- 694. Hulskotte E, Feng HP, Xuan F, van Zutven M, O'Mara E, Youngberg S, et al. Pharmacokinetic interaction between the HCV protease inhibitor boceprevir and ritonavir-boosted HIV-1 protease inhibitors atazanavir, lopinavir, and darunavir. Program and abstracts of the 19th Conference on Retroviruses and Opportunisctic Infections. Seattle, WA, March 5-8, 2012. Abstract 771LB.
- 695. Sulkowski M, Pol S, Cooper C, Fainboim H, Slim J, Rivero A, et al. Boceprevir + pegylated interferon + ribavirin for the treatment of HCV/HIV-co-infected patients: end of treatment (week-48) interim results. Program and abstracts of the 19th Conference on Retroviruses and Opportunisctic Infections. Seattle, WA, March 5-8, 2012. Abstract 47.
- 696. Van Heeswijk R, Garg V, Boogaerts G, Vandebosch A, Luo D, Witek J, et al. The pharmacokinetic interaction between telaprevir and raltegravir in healthy volunteers. Program and abstracts of the 51st Interscience Conference on Antimicrobial Agents and Chemotherapy Chicago, September 17-20, 2011. Abstract A1-1738a
- 697. de Kanter CTMM, Blonk MI, Colbers APH, Fillekes Q, Shouwenberg BJJW, Burger DM. Influence of the HCV protease inhibitor boceprevir on the pharmacokinetics of the HIV integrase inhibitor raltegravir. Program and abstracts

- of the 19th Conference on Retroviruses and Opportunisctic Infections. Seattle, WA, March 5-8, 2012. Abstract 772LB.
- 698. van Bommel F., Wunsche T, Mauss S, Reinke P, Bergk A, Schurmann D, et al. Comparison of adefovir and tenofovir in the treatment of lamivudine-resistant hepatitis B virus infection. Hepatology 2004; 40:1421-1425.
- 699. Dore GJ, Cooper DA, Pozniak AL, DeJesus E, Zhong L, Miller MD, et al. Efficacy of tenofovir disoproxil fumarate in antiretroviral therapy-naive and experienced patients coinfected with HIV-1 and hepatitis B virus. J Infect Dis 2004; 189:1185-1192.
- 700. Schildgen O, Schewe CK, Vogel M, Daumer M, Kaiser R, Weitner L, et al. Successful therapy of hepatitis B with tenofovir in HIV-infected patients failing previous adefovir and lamivudine treatment. AIDS 2004; 18:2325-2327.
- 701. Lim SG, Ng TM, Kung N, Krastev Z, Volfova M, Husa P, et al. A double-blind placebo-controlled study of emtricitabine in chronic hepatitis B. Arch Intern Med 2006; 166:49-56.
- 702. Bessesen M, Ives D, Condreay L, Lawrence S, Sherman KE. Chronic active hepatitis B exacerbations in human immunodeficiency virus-infected patients following development of resistance to or withdrawal of lamivudine. Clin Infect Dis 1999; 28:1032-1305.
- 703. Ramos B, Núñez M, Martin-Carbonero L, Sheldon J, Ríos P, Labarga P, et al. Hepatitis B virus genotypes and lamivudine resistance mutations in HIV/hepatitis B virus-coinfected patients. J Acquir Immune Defic Syndr 2007; 44:557-561.
- 704. Matthews GV, Bartholomeusz A, Locarnini S, Ayres A, Sasaduesz J, Seaberg E, et al. Characteristics of drug resistant HBV in an international collaborative study of HIV-HBV-infected individuals on extended lamivudine therapy. AIDS 2006; 20:863-870.
- 705. Matthews GV, Manzini P, Hu Z, Khabo P, Maja P, Matchaba G, et al. Impact of lamivudine on HIV and hepatitis B virus-related outcomes in HIV/hepatitis B virus individuals in a randomized clinical trial of antiretroviral therapy in southern Africa. AIDS 2011; 25:1727-1735.
- 706. Thio CL, Locarnini S. Treatment of HIV/HBV coinfection: clinical and virologic issues. AIDS Rev 2007; 9:40-53.
- 707. Schwartz EJ, Szczech LA, Ross MJ, Klotman ME, Winston JA, Klotman PE. Highly active antiretroviral therapy and the epidemic of HIV+ end-stage renal disease. J Am Soc Nephrol 2005; 16:2412-2420.
- 708. Mocroft A, Kirk O, Gatell J, Reiss P, Gargalianos P, Zilmer K, et al. Chronic renal failure among HIV-1-infected patients. AIDS 2007; 21:1119-1127.

- 709. Wyatt CM, Winston JA, Malvestutto CD, Fishbein DA, Barash I, Cohen AJ, et al. Chronic kidney disease in HIV infection: an urban epidemic. AIDS 2007; 21:2101-2103.
- 710. Lozano F. Tratamiento antirretroviral en pacientes con insuficiencia renal. En: Rivero A, editor. Tratamiento antirretroviral en situaciones especiales. 4º Edición ed. Malaga: Tafics SL; 2011:231-247.
- 711. Choi Al, Rodriguez RA, Bacchetti P, Bertenthal D, Volberding PA, O'Hare AM. Racial differences in end-stage renal disease rates in HIV infection versus diabetes. J Am Soc Nephrol 2007; 18:2968-2974.
- 712. Overton ET, Nurutdinova D, Freeman J, Seyfried W, Mondy KE. Factors associated with renal dysfunction within an urban HIV-infected cohort in the era of highly active antiretroviral therapy. HIV Med 2009; 10:343-350.
- 713. Campbell LJ, Ibrahim F, Fisher M, Holt SG, Hendry BM, et al. Spectrum of chronic kidney disease in HIV-infected patients. HIV Med 2009; 10:329-336.
- 714. Mocroft A, Kirk O, Reiss P, De Wit S, Sedlacek D, Beniowski M, et al. Estimated glomerular filtration rate, chronic kidney disease and antiretroviral drug use in HIV-positive patients. AIDS 2010; 24:1667-1678.
- 715. Izzedine H, Deray G. The nephrologist in the HAART era. AIDS 2007; 21:409-421.
- 716. Bagnis CI, Deray G. Renal consequences of HIV and HIV therapy. Curr Opin HIV AIDS 2007; 2:314-317.
- 717. Szczech LA, Kalayjian R, Rodriguez R, Gupta S, Coladonato J, Winston J. The clinical characteristics and antiretroviral dosing patterns of HIV-infected patients receiving dialysis. Kidney Int 2003; 63:2295-2301.
- 718. Rastegar DA, Knight AM, Monolakis JS. Antiretroviral medication errors among hospitalized patients with HIV infection. Clin Infect Dis 2006; 43:933-938.
- 719. Phillips RB, Belperio P, Mole I, Katseva V. Comparison of package-insert recommendations for renal dosing and prescribed dosing of products containing tenofovir: the VA experience. Program and abstracts of the 15th Conference on Retroviruses and Opportunistic Infections, Boston, February 3-6, 2011. Abstract 757.
- 720. Levey AS, Coresh J, Balk E, Kausz AT, Levin A, Steffes MW et al. National Kidney Foundation practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Ann Intern Med 2003; 139:137-147.

- 721. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16:31-41.
- 722. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med 1999; 130:461-470.
- 723. Panel de Expertos de Gesida-SEIMC y Plan Nacional sobre el Sida. Recomendaciones de Gesida/Plan Nacional sobre el Sida para el tratamiento de la tuberculosis en adultos infectados por el virus de la inmunodeficiencia humana (actualización enero de 2013). Disponible en: http://www.gesida-seimc.org/pcientifica/dcconsensos.
- 724. Hirsch VM, Dapolito G, Goeken R, Campbell BJ. Phylogeny and natural history of the primate lentiviruses, SIV and HIV. Curr Opin Genet Dev 1995; 5:798-806.
- 725. Tuaillon E, Gueudin M, Lemee V, Gueit I, Roques P, Corrigan GE, et al. Phenotypic susceptibility to nonnucleoside inhibitors of virion-associated reverse transcriptase from different HIV types and groups. J Acquir Immune Defic Syndr 2004; 37:1543-1549.
- 726. Boyer PL, Sarafianos SG, Clark PK, Arnold E, Hughes SH. Why do HIV-1 and HIV-2 use different pathways to develop AZT resistance? PLoS Pathog 2006; 2:e10.
- 727. Smith RA, Anderson DJ, Pyrak CL, Preston BD, Gottlieb GS. Antiretroviral drug resistance in HIV-2: three amino acid changes are sufficient for classwide nucleoside analogue resistance. J Infect Dis 2009; 199:1323-1326.
- 728. Parkin NT, Schapiro JM. Antiretroviral drug resistance in non-subtype B HIV-1, HIV-2 and SIV. Antivir Ther 2004; 9:3-12.
- 729. Desbois D, Roquebert B, Peytavin G, Damond F, Collin G, Benard A, et al. In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors. Antimicrob Agents Chemother 2008; 52:1545-1548.
- 730. Brower ET, Bacha UM, Kawasaki Y, Freire E. Inhibition of HIV-2 protease by HIV-1 protease inhibitors in clinical use. Chem Biol Drug Des 2008; 71:298-305.
- 731. Rodes B, Sheldon J, Toro C, Jiménez V, Alvarez MA, Soriano V. Susceptibility to protease inhibitors in HIV-2 primary isolates from patients failing antiretroviral therapy. J Antimicrob Chemother 2006; 57:709-713.
- 732. Roquebert B, Damond F, Collin G, Matheron S, Peytavin G, Benard A, et al. HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2

- clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. J Antimicrob Chemother 2008; 62:914-920.
- 733. Owen SM, Ellenberger D, Rayfield M, Wiktor S, Michel P, Grieco MH, et al. Genetically divergent strains of human immunodeficiency virus type 2 use multiple coreceptors for viral entry. J Virol 1998; 72:5425-5432.
- 734. Poveda E, Rodes B, Toro C, Soriano V. Are fusion inhibitors active against all HIV variants? AIDS Res Hum Retroviruses 2004; 20:347-348.
- 735. D'Arminio MA, González L, Haberl A, Sherr L, Ssanyu-Sseruma W, Walmsley SL. Better mind the gap: addressing the shortage of HIV-positive women in clinical trials. AIDS 2010; 24:1091-1094.
- 736. Pérez-Molina JA, Mora-Rillo M, Suárez-Lozano I, Casado-Osorio JL, Teira-Cobo R, Rivas-González P, et al. Response to combined antiretroviral therapy according to gender and origin in a cohort of naive HIV-infected patients: GESIDA-5808 study. HIV Clin Trials 2012; 13:131-141.
- 737. Pérez-Elías MJ, Muriel A, Moreno A, Arazo P, Leal M, Navarro G, et al. Relevant changes in features at presentation among HIV infected women in the Spanish AIDS research network cohort (CoRis, 1996-2008). Program and abstracts of the 18th International AIDS Conference; Vienna, July 18-23, 2010. Abstract CDC0280.
- 738. Umeh OC, Currier JS, Park JG, Cramer Y, Hermes AE, Fletcher CV. Sex differences in lopinavir and ritonavir pharmacokinetics among HIV-infected women and men. J Clin Pharmacol 2011; 51: 1665-1673.
- 739. Venuto CM, Ma Q, et al. Atazanavir pharmacokinetics and efficacy and safety outcomes by sex in AIDS Clinical Trials Group Study 5202 (A5202). Program and abstracts of the 19th International AIDS Conference; 22-27 July, 2012; Washington DC, USA. Abstract TUPDB0101.
- 740. Hirsch JS. Gender, sexuality, and antiretroviral therapy: using social science to enhance outcomes and inform secondary prevention strategies. AIDS 2007;21 (Suppl 5):S21-S29.
- 741. Nicastri E, Leone S, Angeletti C, Palmisano L, Sarmati L, Chiesi A, et al. Sex issues in HIV-1-infected persons during highly active antiretroviral therapy: a systematic review. J Antimicrob Chemother 2007; 60:724-732.
- 742. Millennium Challenge Corporation. Gender Integration Guidelines. Disponible en: http://www.mcc.gov/documents/guidance/guidance-2011001054001-genderintegration.pdf (Acceso 15.12.2012)
- 743. Nostlinger C, Niderost S, Woo R, Platteau T, Loos J, Colebunders R. Mirror on the wall: the face of HIV + women in Europe today. AIDS Care 2010; 22:919-926.

- 744. Dubois-Arber F, Jeannin A, Spencer B, Gervasoni JP, Graz B, Elford J, et al. Mapping HIV/STI behavioural surveillance in Europe. BMC Infect Dis 2010; 10:290.
- 745. Doyal L. Challenges in researching life with HIV/AIDS: an intersectional analysis of black African migrants in London. Cult Health Sex 2009; 11:173-188.
- 746. Ministerio de Sanidad y Consumo. Plan Multisectorial frente a la infección por VIH y el sida. España 2008-2012. Madrid Centro de publicaciones del Ministerio de Sanidad y Consumo 2007.
- 747. Panel de expertas y expertos del Plan Nacional sobre el Sida y de GESIDA. Documento de consenso de la Secretaría del Plan Nacional sobre el Sida /GESIDA sobre la Asistencia en el ámbito sanitario a las mujeres con infección por el VIH (Febrero 2012). Disponible en: http://www.gesida-seimc.org/pcientifica/fuentes/DcyRc/gesidadcyrc2012-Documentoconsenso-asistenciaVIHMujeres.pdf
- 748. Collazos J, Asensi V, Cartón JA. Sex differences in the clinical, immunological and virological parameters of HIV-infected patients treated with HAART. AIDS 2007; 21:835-843.
- 749. Prins M, Meyer L, Hessol NA. Sex and the course of HIV infection in the preand highly active antiretroviral therapy eras. AIDS 2005; 19:357-370.
- 750. Tedaldi EM, Absalon J, Thomas AJ, Shlay JC, van den Berg-Wolf M. Ethnicity, race, and gender. Differences in serious adverse events among participants in an antiretroviral initiation trial: results of CPCRA 058 (FIRST Study). J Acquir Immune Defic Syndr 2008; 47:441-448.
- 751. Soon GH, Min M, Struble K, Chan-Tack K, Hammerstrom T, et al. Metaanalysis of gender differences in efficacy outcomes for HIV-positive subjects in randomized controlled clinical trials of antiretroviral therapy (2000-2008). AIDS Patient Care STDS 2012; 26:444-453.
- 752. Currier J, Averitt BD, Hagins D, Zorrilla CD, Feinberg J, Ryan R, et al. Sex-based outcomes of darunavir-ritonavir therapy: a single-group trial. Ann Intern Med 2010; 153:349-357.
- 753. Smith K, Tierney C, Daar E, et al. Association of race/ethnicity and sex on outcomes in ACTG Study A5202. Program and abstracts of the 19th International AIDS Conference; 22-27 July, 2012; Washington DC, USA. Abstract 536.
- 754. Squires KE, Johnson M, Yang R, Uy J, Sheppard L, Absalon J, et al. Comparative gender analysis of the efficacy and safety of atazanavir/ritonavir and lop-inavir/ritonavir at 96 weeks in the CASTLE study. J Antimicrob Chemother 2011; 66:363-370.
- 755. Hermes A, Squires KE, Fredrick L, Martínez E, Pasley M, Trinh R, et al. Metaanalysis of the safety, tolerability, and efficacy of lopinavir/ritonavir-

- containing antiretroviral therapy in HIV-1-infected women. HIV Clin Trials 2012; 13:308-323.
- 756. Hodder S, Arasteh K, De Wet J, Gathe J, Gold J, Kumar P, et al. Effect of gender and race on the week 48 findings in treatment-naive, HIV-1-infected patients enrolled in the randomized, phase III trials ECHO and THRIVE. HIV Med 2012; 13:406-415.
- 757. Kwakwa HTLL, Spencer DE, et al. Gender differences in virologic outcomes in a systematic review of randomized controlled clinical trials in HIV-1-infected patients on antiretroviral therapy. Program and abstracts of the 19th International AIDS Conference; July 22-27, 2012; Washington DC, USA. Abstract THPE041.
- 758. Floridia M, Ravizza M, Guaraldi G, Pinnetti C, Martinelli P, Tamburrini E. Use of specific antiretroviral regimens among HIV-infected women in Italy at time of conception: 2001-2011. AIDS Patient Care STDS 2012; 26:439-443.
- 759. Santoro N, Fan M, Maslow B, Schoenbaum E. Women and HIV infection: the makings of a midlife crisis. Maturitas 2009; 64:160-164.
- 760. Ferreira CE, Pinto-Neto AM, Conde DM, Costa-Paiva L, Morais SS, Magalhaes J. Menopause symptoms in women infected with HIV: prevalence and associated factors. Gynecol Endocrinol 2007; 23:198-205.
- 761. de Pommerol M, Hessamfar M, Lawson-Ayayi S, Neau D, Geffard S, Farbos S, et al. Menopause and HIV infection: age at onset and associated factors, ANRS CO3 Aquitaine cohort. Int J AIDS STD 2011; 22:67-72
- 762. Rosin C, Thurnheer C, Cavassini M, Hirschel B, Vernazza P, Bernasconi E, et al. Antiretroviral therapy in women: trends over 12 years in the Swiss HIV cohort study. Program and abstracts of the 13th European AIDS Conference; Belgrade October 12-15, 2011. Abstract PS11/4.
- 763. Cohen CJ, Molina JM, Cassetti I, Chetchotisakd P, Lazzarin A, Orkin C, et al. Week 96 efficacy and safety of rilpivirine in treatment-naïve, HIV-1 patients in two Phase III randomised trials. AIDS 2012, Dec 3. Epub ahead of print.
- 764. Sarner L, Fakoya A. Acute onset lactic acidosis and pancreatitis in the third trimester of pregnancy in HIV-1 positive women taking antiretroviral medication. Sex Transm Infect 2002; 78:58-59.
- 765. Barzon L, Zamboni M, Pacenti M, Milan G, Bosello O, Federspil G, et al. Do oestrogen receptors play a role in the pathogenesis of HIV-associated lipodystrophy? AIDS 2005; 19:531-533.
- 766. Mulligan K, Anastos K, Justman J, Freeman R, Wichienkuer P, Robison E, et al. Fat distribution in HIV-infected women in the United States: DEXA substudy in

- the Women's Interagency HIV Study. J Acquir Immune Defic Syndr 2005; 38:18-22.
- 767. From the Study of Fat Redistribution and Metabolic Change in HIV Infection. Fat distribution in women with HIV infection. J Acquir Immune Defic Syndr 2006; 42:562-571.
- 768. Jones DL, Ishii OM, Lydston D, Tobin JN, Brondolo E, Weiss SM. Self-efficacy and distress in women with AIDS: the SMART/EST women's project. AIDS Care 2010; 22:1499-1508.
- 769. Wagner AC, Hart TA, Mohammed S, Ivanova E, Wong J, Loutfy MR. Correlates of HIV stigma in HIV-positive women. Arch Womens Ment Health 2010; 13:207-214.
- 770. Luzi K, Guaraldi G, Murri R, De Paola M., Orlando G, Squillace N, et al. Body image is a major determinant of sexual dysfunction in stable HIV-infected women. Antivir Ther 2009; 14:85-92.
- 771. Cespedes MS, Aberg JA. Neuropsychiatric complications of antiretroviral therapy. Drug Saf 2006; 29:865-874.
- 772. Smith CJ, Sabin CA, Youle MS, Lampe FC, Bhagani S, Madge S, et al. Response to efavirenz-containing regimens in previously antiretroviral-naive HIV-positive patients: the role of gender. J Acquir Immune Defic Syndr 2007; 46:62-67.
- 773. Dolan SE, Huang JS, Killilea KM, Sullivan MP, Aliabadi N, Grinspoon S. Reduced bone density in HIV-infected women. AIDS 2004; 18:475-483.
- 774. Dolan SE, Carpenter S, Grinspoon S. Effects of weight, body composition, and testosterone on bone mineral density in HIV-infected women. J Acquir Immune Defic Syndr 2007; 45:161-167.
- 775. Yin MT, Shane E. Low bone-mineral density in patients with HIV: pathogenesis and clinical significance. Curr Opin Endocrinol Diabetes 2006; 13:497-502.
- 776. Yin MT, Lu D, Cremers S, Tien PC, Cohen MH, Shi Q et al. Short-term bone loss in HIV-infected premenopausal women. J Acquir Immune Defic Syndr 2010; 53:202-208.
- 777. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Santoro N, Schoenbaum EE. HIV infection and bone mineral density in middle-aged women. Clin Infect Dis 2006; 42:1014-1020.
- 778. Yin, MT, Zhang CA, McMahon DJ, Ferris DC, Irani D, Colon I, et al. Higher rates of bone loss in postmenopausal HIV-infected women: a longitudinal study. J Clin Endocrinol Metab 2012; 97:554-562.

- 779. Sharma A, Tian F, Yin MT, Keller MJ, Cohen M, Tien PC. Association of regional body composition with bone mineral density in HIV-infected and HIV-uninfected women: Women's Interagency HIV Study. J Acquir Immune Defic Syndr 2012; 61:469-476.
- 780. Sharma A, Cohen HW, Freeman R, Santoro N, Schoenbaum EE. Prospective evaluation of bone mineral density among middle-aged HIV-infected and uninfected women: association between methadone use and bone loss. Maturitas 2011; 70:295-301.
- 781. Barber TJ, Geretti AM, Anderson J, Schwenk A, Phillips AN, Bansi L, et al. Outcomes in the first year after initiation of first-line HAART among heterosexual men and women in the UK CHIC Study. Antivir Ther 2011; 16:805-814.
- 782. Kempf MC, Pisu M, Dumcheva A, Westfall AO, Kilby JM, Saag MS. Gender differences in discontinuation of antiretroviral treatment regimens. J Acquir Immune Defic Syndr 2009; 52:336-341.
- 783. Pérez-Elías MJ, Muriel A, Moreno A, Casado JL, Iribarren JA, Segura F, et al. Women antiretroviral use: durability, tolerance and virologic response when first attended for clinical care in the Spanish AIDS Research Network Cohort (CoRis, 1996-2008). Program and abstracts of the 18th International AIDS Conference, Vienna, July 18-23, 2010. Abstract THPE0088.
- 784. Kang SY, Deren S, Colón HM. Differential gender effects of depression on use of HIV medications among HIV-positive Puerto Rican drug users. AIDS Care 2011; 23:1467-1471.
- 785. Turner BJ, Laine C, Cosler L, Hauck WW. Relationship of gender, depression, and health care delivery with antiretroviral adherence in HIV-infected drug users. J Gen Intern Med 2003; 18:248-257.
- 786. Lazarus L, Deering KN, Nabess R, Gibson K, Tyndall MW, Shannon K. Occupational stigma as a primary barrier to health care for street-based sex workers in Canada. Cult Health Sex 2012; 14:139-150.
- 787. Aziz, M, Smith K. Treating women with HIV: Is it different than treating men? Curr HIV/AIDS Rep 2012; 9:171-178.
- 788. Pérez-Elías M, Muriel A, Moreno A, Martínez-Colubi M, Blanco JR, Rubio R, et al. Gender differences in the pattern of use and durability of initial ART: Spain, CoRis, 1996 to 2008. Program and abstract of the 19th Conference on Retroviruses and Opportunistic Infections; March 5-8, 2012; Seattle, WA. Abstract 1043.
- 789. Cejtin HE. Gynecologic issues in the HIV-infected woman. Infect Dis Clin North Am 2008; 22:709-39.

- 790. Curtis KM, Nanda K, Kapp N. Safety of hormonal and intrauterine methods of contraception for women with HIV/AIDS: a systematic review. AIDS 2009;23 (Suppl 1):S55-S67.
- 791. Waters L, Barton S. Contraception and HIV: what do we know and what needs to be done? J Fam Plann Reprod Health Care 2006; 32:10-14.
- 792. Heikinheimo O, Lahteenmaki P. Contraception and HIV infection in women. Hum Reprod Update 2009; 15:165-176.
- 793. Vogler MA, Patterson K, Kamemoto L, Park JG, Watts H, Aweeka F et al. Contraceptive efficacy of oral and transdermal hormones when co-administered with protease inhibitors in HIV-1-infected women: pharmacokinetic results of ACTG trial A5188. J Acquir Immune Defic Syndr 2010; 55:473-482.
- 794. Heikinheimo O, Lehtovirta P, Aho I, Ristola M, Paavonen J. The levonorgestrel-releasing intrauterine system in human immunodeficiency virusinfected women: a 5-year follow-up study. Am J Obstet Gynecol 2011; 204:126.e121-124.
- 795. Leticee N, Viard JP, Yamgnane A, Karmochkine M, Benachi A. Contraceptive failure of etonogestrel implant in patients treated with antiretrovirals including efavirenz. Contraception 2012; 85:425-427.
- 796. Ngure K, Heffron R, Mugo NR, Celum C, Cohen CR, Odoyo J, et al. Contraceptive method and pregnancy incidence among women in HIV-1-serodiscordant partnerships. AIDS 2012; 26:513-518.
- 797. Anderson MS, Hanley WD, Moreau AR, Jin B, Bieberdorf FA, Kost JT, et al. Effect of raltegravir on estradiol and norgestimate plasma pharmacokinetics following oral contraceptive administration in healthy women. Br J Clin Pharmacol 2011; 71:616-620.
- 798. Chu JH, Gange SJ, Anastos K, Minkoff H, Cejtin H, Bacon M, et al. Hormonal contraceptive use and the effectiveness of highly active antiretroviral therapy. Am J Epidemiol 2005; 161:881-890.
- 799. El-Ibiary SY, Cocohoba JM. Effects of HIV antiretrovirals on the pharmacokinetics of hormonal contraceptives. Eur J Contracept Reprod Health Care 2008; 13:123-132.
- 800. Mildvan D, Yarrish R, Marshak A, Hutman HW, McDonough M, Lamson M, et al. Pharmacokinetic interaction between nevirapine and ethinyl estradiol/norethindrone when administered concurrently to HIV-infected women. J Acquir Immune Defic Syndr 2002; 29:471-477.
- 801. Ouellet D, Hsu A, Qian J, Locke CS, Eason CJ, Cavanaugh JH, et al. Effect of ritonavir on the pharmacokinetics of ethinyl oestradiol in healthy female volunteers. Br J Clin Pharmacol 1998; 46:111-116.

- 802. Sevinsky H, Eley T, Persson A, Garner D, Yones C, Nettles R et al. The effect of efavirenz on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy HIV-negative women. Antivir Ther 2011; 16:149-156.
- 803. Zhang J, Chung E, Yones C, Persson A, Mahnke L, Eley T et al. The effect of atazanavir/ritonavir on the pharmacokinetics of an oral contraceptive containing ethinyl estradiol and norgestimate in healthy women. Antivir Ther 2011; 16:157-164.
- 804. Robinson JA, Jamshidi R, Burke AE. Contraception for the HIV-positive woman: a review of interactions between hormonal contraception and antiretroviral therapy. Infect Dis Obstet Gynecol. 2012;2012:890160.
- 805. Carten, ML, Kiser JJ, et al. Pharmacokinetic interactions between the hormonal emergency contraception, levonorgestrel (Plan B), and Efavirenz. Infect Dis Obstet Gynecol 2012; 2012:137192.
- 806. Watts DH, Park JG, Cohn SE, Yu S, Hitti J, Stek A, et al. Safety and tolerability of depot medroxyprogesterone acetate among HIV-infected women on antiretroviral therapy: ACTG A5093. Contraception 2008; 77:84-90.
- 807. Nanda K, Amaral E, Hays M, Viscola MA, Mehta N, Bahamondes L. Pharmacokinetic interactions between depot medroxyprogesterone acetate and combination antiretroviral therapy. Fertil Steril 2008; 90:965-971.
- 808. Beksinska ME, Smit JA, Ramkissoon A. Progestogen-only injectable hormonal contraceptive use should be considered in analysis of studies addressing the loss of bone mineral density in HIV-positive women. J Acquir Immune Defic Syndr 2010; 54:e5.
- 809. Heffron R, Donnell D, Rees H, Celum C, Mugo N, Were E, et al. Use of hormonal contraceptives and risk of HIV-1 transmission: a prospective cohort study. Lancet Infect Dis 2012; 12:19-26.
- 810. Morrison CS, Nanda K. Hormonal contraception and HIV: an unanswered question. Lancet Infect Dis 2012; 12:2-3.
- 811. Mugo NR, Heffron R, Donnell D, Wald A, Were EO, Rees H, et al. Increased risk of HIV-1 transmission in pregnancy: a prospective study among African HIV-1-serodiscordant couples. AIDS 2011; 25:1887-1895.
- 812. Morrison CS, Skoler-Karpoff S, Kwok C, Chen PL, van de Wijgert J, Gehret-Plagianos M, et al. Hormonal contraception and the risk of HIV acquisition among women in South Africa. AIDS 2012; 26:497-504.
- 813. Stringer EM, Levy J, Sinkala M, Chi BH, Matongo I, Chintu N, et al. HIV disease progression by hormonal contraceptive method: secondary analysis of a randomized trial. AIDS 2009; 23:1377-1382.

- 814. Morrison CS, Chen PL, Kwok C, Richardson BA, Chipato T, Mugerwa R, et al. Hormonal contraception and HIV acquisition: reanalysis using marginal structural modeling. AIDS 2010; 24:1778-1781.
- 815. Panel on Treatment of HIV-Infected Pregnant Women and Prevention of Perinatal Transmission. Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-infected women for maternal health and interventions to reduce perinatal HIV transmission in the United States. Sep. 14, 2011; pp 1-207. Disponible en http://aidsinfo.nih.gov/contentfiles/PerinatalGL.pdf (Acceso 15.12.2011)
- 816. Senise JF, Castelo A, Martinez M. Current treatment strategies, complications and considerations for the use of HIV antiretroviral therapy during pregnancy. AIDS Rev 2011; 13:198-213.
- 817. Linas BS, Minkoff H, Cohen MH, Karim R, Cohan D, Wright RL, et al. Relative time to pregnancy among HIV-infected and uninfected women in the Women's Interagency HIV Study, 2002-2009. AIDS 2011; 25:707-711.
- 818. Grupo de expertos de la Secretaría del Plan Nacional sobre el Sida (SPNS), Grupo de Estudio del Sida (GESIDA), Sociedad Española de Ginecología y Obstetricia (SEGO) y Sociedad española de Infectología Pediátrica /SEIP). Guía práctica para el seguimiento de la infección por VIH en relación con la reproducción, embarazo, parto y profilaxis de la transmisión vertical del niño expuesto (2013). Disponible en: http://www.gesida-seimc.org/pcientifica/dcconsensos.asp?apnv0=pcientifica&apnvA=dcconsensosyrc&appag=dcconsensos txt.htm (Acceso 17.01.2013).
- 819. Ioannidis JP, Abrams EJ, Ammann A, Bulterys M, Goedert JJ, Gray L, et al. Perinatal transmission of human immunodeficiency virus type 1 by pregnant women with RNA virus loads <1000 copies/ml. J Infect Dis 2001; 183:539-545.
- 820. Connor EM, Sperling RS, Gelber R, Kiselev P, Scott G, O'Sullivan MJ, et al. Reduction of maternal-infant transmission of human immunodeficiency virus type 1 with zidovudine treatment. Pediatric AIDS Clinical Trials Group Protocol 076 Study Group. N Engl J Med 1994; 331:1173-80.
- 821. Taylor GP, Clayden P, Dhar J, Gandhi K, Gilleece Y, Harding K, et al. British HIV Association guidelines for the management of HIV infection in pregnant women 2012. HIV Med 2012; 13 (Suppl 2): 87-157.
- 822. Read PJ, Mandalia S, Khan P, Harrisson U, Naftalin C, Gilleece Y, et al. When should HAART be initiated in pregnancy to achieve an undetectable HIV viral load by delivery? AIDS 2012; 26:1095-1103.
- 823. Schwartz S, Taha TE, Venter WD, Mehta S, Rees H, Black V. Efavirenz conceptions and regimen management in a prospective cohort of women on antiretroviral therapy. Infect Dis Obstet Gynecol 2012; 2012:723096.

- 824. Ford N, Calmy A, Mofenson L. Safety of efavirenz in the first trimester of pregnancy: an updated systematic review and meta-analysis. AIDS 2011; 25: 2301-2304.
- 825. Samuel M, Bradshaw D, Perry M, Byrne L, Dhairyawan R, Naftalin C et al. Atazanavir in pregnancy: a retrospective review of 155 cases to assess tolerability, toxicity, efficacy and the proportion of exposed neonates delivered preterm. Program and abstracts of the 13th European AIDS Conference; Belgrade, October 12-15, 2011. Abstract PE 14.9/1.
- 826. Conradie F, Zorrilla C, Josipovic D, Botes M, Osiyemi O, Vandeloise E, et al. Safety and exposure of once-daily ritonavir-boosted atazanavir in HIV-infected pregnant women. HIV Med 2011; 12:570-579.
- 827. Cotter AM, Garcia AG, Duthely ML, Luke B, O'Sullivan MJ. Is antiretroviral therapy during pregnancy associated with an increased risk of preterm delivery, low birth weight, or stillbirth? J Infect Dis 2006; 193:1195-1201.
- 828. López M, Figueras F, Hernández S, Lonca M, García R, Palacio M, et al. Association of HIV infection with spontaneous and iatrogenic preterm delivery: effect of HAART. AIDS 2012; 26:37-43.
- 829. Sibiude J, Warszawski J, Tubiana R, Dollfus C, Faye A, Rouzioux C, et al. Premature delivery in HIV-infected women starting protease inhibitor therapy during pregnancy: role of the ritonavir boost? Clin Infect Dis 2012; 54:1348-1360.
- 830. Garrido C, Soriano V, de Mendoza C. New therapeutic strategies for raltegravir. J Antimicrob Chemother 2010; 65:218-223.
- 831. McKeown DA, Rosenvinge M, Donaghy S, Sharland M, Holt DW, Cormack I, et al. High neonatal concentrations of raltegravir following transplacental transfer in HIV-1 positive pregnant women. AIDS 2010; 24:2416-2418.
- 832. Taylor N, Touzeau V, Geit M, Gisinger M, Egle A, Greil R, et al. Raltegravir in pregnancy: a case series presentation. Int J STD AIDS 2011; 22:358-360.
- 833. Kuhn, L. and M. Bulterys. Does maternal use of tenofovir during pregnancy affect growth of HIV-exposed uninfected infants? AIDS 2012; 26:1167-1169.
- 834. Ransom CH, Patel K, et al. Association of tenofovir disoproxil fumarate with neonatal growth. Program and abstracts of the 19th International AIDS Conference; July 22-27, 2012; Washington DC, USA. Abstract MOPE062.
- 835. Siberry GK, Williams PL, Mendez H, Seage GR 3rd, Jacobson DL, Hazra R, et al. Safety of tenofovir use during pregnancy: early growth outcomes in HIV-exposed uninfected infants. AIDS 2012; 26:1151-1159.
- 836. Antiretroviral Pregnancy Registry Steering Committee. Antiretroviral pregnancy registry international interim report for 1 January 1989 through 31

- January 2012 (Issued June 2012). Accesible en: www.apregistry.com (Acceso 20.12.2012).
- 837. Hitti J, Frenkel LM, Stek AM, Nachman SA, Baker D, González-García A, et al. Maternal toxicity with continuous nevirapine in pregnancy: results from PACTG 1022. J Acquir Immune Defic Syndr 2004; 36:772-776.
- 838. Fiore S, Newell ML, Thorne C. Higher rates of post-partum complications in HIV-infected than in uninfected women irrespective of mode of delivery. AIDS 2004; 18:933-938.
- 839. Achievements in Public Health. Reduction in perinatal transmission of HIV infection--United States, 1985-2005. MMWR Morb Mortal Wkly Rep 2006; 55:592-597.
- 840. Font United Nations Programme on HIV/AIDS (2011). World AIDS Day report: how to get to zero: faster, smarter, better. http://www.unaids.org/en/media/unaids/contentassets/documents/unaidspublication/2011/JC2216 WorldAIDSday report-2011 en.pdf.
- 841. Quinn TC, Wawer MJ, Sewankambo N, Serwadda D, Li C, Wabwire-Mangen F, et al. Viral load and heterosexual transmission of human immunodeficiency virus type 1. Rakai Project Study Group. N Engl J Med 2000; 342:921-929.
- 842. Siegfried N, Muller M, Deeks JJ, Volmink J. Male circumcision for prevention of heterosexual acquisition of HIV in men. Cochrane Database Syst Rev 2009: CD003362.
- 843. Cohen MS, Dye C, Fraser C, Miller WC, Powers KA, Williams BG. HIV Treatment as prevention: debate and commentary—will early infection compromise treatment-as-prevention strategies? Plos Med 2012; 9: e1001232.
- 844. Padian NS, McCoy SI, Karim SS, Hasen N, Kim J, Bartos M, et al. HIV prevention transformed: the new prevention research agenda. Lancet 2011; 378:269-278.
- 845. Cohen MS, Musseig KE, Smith KM, Powers K, Kashuba DM. Antiviral agents and HIV prevention: controversies, conflicts and consensus. AIDS 2012; 26:1585-1598.
- 846. The HIV Modelling Consortium Treatment as Prevention Editorial Writing Group. The HIV treatment as prevention: models, data and questions. Towards evidence-based decision-making. Plos Med 2012; 9: e-1001259.
- 847. Fauci AS, Folkers GK. Toward an AIDS-free generation. JAMA 2012; 308:343-344.

- 848. Attia S, Egger M, Muller M, Zwahlen M, Low N. Sexual transmission of HIV according to viral load and antiretroviral therapy: systematic review and meta-analysis. AIDS 2009; 23:1397-1404.
- 849. Donnell D, Baeten JM, Kiarie J, Thomas KK, Stevens W, Cohen CR, et al. Heterosexual HIV-1 transmission after initiation of antiretroviral therapy: a prospective cohort analysis. Lancet 2010; 375:2092-2098.
- 850. Sullivan P, Kayitenkore K, Chomba E, Karita E, Mwananyanda L, Vwalika C, et al. Is the reduction of HIV transmission risk while prescribed antiretroviral therapy (ARTV) different for men and women? Results from discordant couples in Rwanda and Zambia. Program and abstracts of the 5th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Cape Town, July 19-22, 2009. Abstract WEAC101.
- 851. Reynolds SJ, Makumbi F, Nakigozi G, Kagaayi J, Gray RH, Wawer M, et al. HIV-1 transmission among HIV-1 discordant couples before and after the introduction of antiretroviral therapy. AIDS 2011; 25:473-477.
- 852. Del Romero J, Castilla J, Hernando V, Rodríguez C, García S. Combined antiretroviral treatment and heterosexual transmission of HIV-1: cross sectional and prospective cohort study. BMJ 2010; 340:c2205.
- 853. Anglemeyer A, Rutherford GW, Baggaley RC, Egger M, Siegfried N. Antiretroviral therapy for prevention of HIV transmission in HIV-discordant couples. Cochrane Database of Systematic Reviews 2011; CD009153. DOI: 10.1002/14651858. CD009153.pub2.
- 854. PEPFAR Scientific Advisory Board. PEPFAR Scientific Advisory Board Recommendations for the Office of the US Global AIDS Coordinator: Implicactions of HPTN 052 for PEFAR's Treatment Programms 2011. Disponible en: http://www.pepfar.gov/documents/organization/177216.pdf
- 855. WHO. WHO and US NIH Working Group Meeting on Treatment for HIV Prevention among MSM: What additional evidence is required? Geneva, Switzerland; 2011 Oct. 26-27. Disponible en: http://www.who.int/hiv/pub/msm meeting report.pdf
- 856. Granich RM, Gilks CF, Dye C, De Cock KM, Williams BG. Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: a mathematical model. Lancet 2009; 373:48-57.
- 857. Charlebois ED, Das M, Porco TC, Havlir DV. The effect of expanded antiretroviral treatment strategies on the HIV epidemic among men who have sex with men in San Francisco. Clin Infect Dis 2011; 52:1046-1049.
- Wilson DP. HIV treatment as prevention: natural experiments highlight limits of antiretroviral treatment as HIV prevention. Plos Med 2012; 9:e1001231.

- 859. Das M, Chu PL, Santos GM, Scheer S, Vittinghoff E, McFarland W, et al. Decreases in community viral load are accompanied by reductions in new HIV infections in San Francisco. PLoS One 2010; 5:e11068.
- 860. Montaner JS, Lima VD, Barrios R, Yip B, Wood E, Kerr T, et al. Association of highly active antiretroviral therapy coverage, population viral load, and yearly new HIV diagnoses in British Columbia, Canada: a population-based study. Lancet 2010; 376:532-539.
- 861. CDC. Vital signs: HIV prevention trough care and treatment-United States. MMWR 2011; 60:1618-1623.
- 862. Tanser F, Barnighausen T, Grapsa E, Newll ML. Efforts of ART coverage on rate of new infections in a hyperendemic rural poblation: South Africa. Program and abstracts of the 19th Conference on Retroviruses and Opportunistic Infections. March 5-8, 2012; Seattle, WA. Abstract 163LB.
- 863. Gardner EM, McLees MP, Steiner JF, Del RC, Burman WJ. The spectrum of engagement in HIV care and its relevance to test-and-treat strategies for prevention of HIV infection. Clin Infect Dis 2011; 52:793-800.
- 864. Abdool Karim SS, Abdool Karim Q, Frohlich JA, Grobler AC, Baxter C, Mansoor LE, et al. Effectiveness and safety of tenofovir gel, an antiretroviral microbicide, for the prevention of HIV infection in women. Science 2010; 329:1168-1174.
- 865. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, Vargas L, et al. Preexposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 2010; 363:2587-2599.
- 866. Baeten JM, Donnell D, Ndase P, Mugo RR, Campbell JD, Wangisi J, et al. Antiretroviral prophylaxis for HIV prevention in hetrosexual men and women. N Engl J Med 2012; 67:399-410.
- 867. Thiigpen MC, Kebaabetswe PK, Paxton LA, Smith DK, Rose CE, Segolodi TM, et al. Antiretroviral preexposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med 2012; 367:423-434.
- 868. Van Damme L, Corneli A, Ahmed K, Agot K, Lombaard J, Kapiga S, et al. Preexposure prophylaxis for HIV infection among african women. N Engl J Med 2012;367:411-422.
- 869. Microbicide Trials Network. VOICE (MTN003) Study. Disponible en: http://www.mtnstopshiv.org/news/studies/mnt003
- 870. Kashuba ADM, Patterson KB, Dumond JB, Cohen MS. Preexposure prophylaxis for HIV prevention: how to predict success. Lancet 2012; 379:2409-2411.

- 871. WHO. Guidance on oral Pre-Exposure Prophylaxis (PrEP) for serodiscordant couples, men and transgender women who have sex with men at high risk of HIV: Recommendations for use in the context of demonstration projects. www.who.int/hiv/pub/guidance_prep/en/index.html
- 872. CDC. Interim guidance: Preexposure prophylaxis for the prevention of HIV infection in men who have sex with men. MMWR 2011; 60:65-68.
- 873. CDC. Interim guidance for clinicians considering the use of preexposure prophylaxis for the prevention pf HIV infection in heterosexually active adults. MMWR 2012; 61:586-589.
- 874. Krakower D, Mayer KH. What primary care providers need to know about prexposure prophylaxis for HIV prevention. Ann Intern Med 2012; 157:490-497.
- 875. Henderson DK. Management of needlestick injuries. A house officer who has a needlestick. JAMA 2012; 307:75-84.
- 876. Cardo DM, Culver DH, Ciesielski CA, Srivastava PU, Marcus R, Abiteboul D, et al. A case-control study of HIV seroconversion in health care workers after percutaneous exposure. Centers for Disease Control and Prevention Needlestick Surveillance Group. N Engl J Med 1997; 337:1485-1490.
- 877. Panlilio AL, Cardo DM, Grohskopf LA, Heneine W, Ross CS. Updated U.S. Public Health Service guidelines for the management of occupational exposures to HIV and recommendations for postexposure prophylaxis. MMWR Recomm Rep 2005; 54(RR-9):1-17.
- 878. Luque A, Hulse S, Wang D, Shahzad U, Tanzman E, Antenozzi S, et al. Assessment of adverse events associated with antiretroviral regimens for postexposure prophylaxis for occupational and nonoccupational exposures to prevent transmission of human immunodeficiency virus. Infect Control Hosp Epidemiol 2007; 28:695-701.
- 879. Polo R, Aguirrebengoa K, Vives N, (Coordinadores). Recomendaciones del SPNS, GeSIDA, CEESCAT, SEIP y AEP sobre profilaxis postexposición frente al VIH, VHB y VHC en adultos y niños (Enero 2008). http://www.gesida-seimc.org/pcientifica/fuentes/DcyRc/Gesida dcyrc200801 profilaxispostexpo sicion.pdf
- 880. New York State Departement of Health AIDS Institute. HIV prophylaxis following occupational exposure. What's new. October 2012 update. www.hivguidelines.org.
- 881. Young T, Arens FJ, Kenndy GE, Laurie JV, Rutherford GW. Antiretroviral postexposure prophylaxis for occupational HIV exposure. Cochrane Database Syst Rev 2007; 2007(1): CD002835. DOI:10.1002/14651858.CD002835.pub3.

- 882. Zenner D, Tomkins S, Charlett A, Wellings K, Ncube F. HIV prone occupational exposures: epidemiology and factors associated with initiation of post-exposure prophylaxis. J Epidemiol Community Health 2009; 63:373-378.
- 883. Hensic L, Dong B. Non-guideline post-exposure prophylaxis regimens for occupational percutaneous exposures to HIV+ source patients. Program and abstracts of the 18th Conference on Retroviruses and Opportunistic Infections (CROI). Boston, MA, February 27-March 2, 2011. Abstract 1033.
- 884. Bryant J, Baxter L, Hird S. Non-occupational postexposure prophylaxis for HIV: a systematic review. Health Technol Assess 2009;13:iii, ix-x, 1-60.
- 885. Smith DK, Grohskopf LA, Black RJ, Auerbach JD, Veronese F, Struble KA, et al. Antiretroviral postexposure prophylaxis after sexual, injection-drug use, or other nonoccupational exposure to HIV in the United States: recommendations from the U.S. Department of Health and Human Services. MMWR Recomm Rep 2005; 54(RR-2):1-20.
- 886. Boily MC, Baggaley RF, Wang L, Masse B, White RG, Hayes RJ, et al. Heterosexual risk of HIV-1 infection per sexual act: systematic review and meta-analysis of observational studies. Lancet Infect Dis 2009; 9:118-129.
- 887. Jin F, Jansson J, Law M, Prestage GP, Zablotska I, Imrie JC, et al. Per-contact probability of HIV transmission in homosexual men in Sydney in the era of HAART. AIDS 2010; 24:907-913.
- 888. Roland ME, Neilands TB, Krone MR, Coates TJ, Franses K, Chesney MA, et al. A randomized noninferiority trial of standard versus enhanced risk reduction and adherence counseling for individuals receiving post-exposure prophylaxis following sexual exposures to HIV. Clin Infect Dis 2011; 53:76-83.
- 889. Vives N, Almeda J, Contreras CA, Garcia F, Campins M, Casabona J. Demanda y prescripción de la profilaxis postexposición no ocupacional al VIH en España (2001-2005). Enferm Infecc Microbiol Clin 2008; 26:546-551.
- 890. Tissot F, Erard V, Dang T, Cavassini M. Nonoccupational HIV post-exposure prophylaxis: a 10-year retrospective analysis. HIV Med 2010; 11:584-592.
- 891. Heuker J, Sonder GJB, Stolke, Geskus R, van der Hoek A. High HIV incidence among MSM prescribed postexposure prophylaxis, 2000-2009: indications for ongoing sexual risk behaviour. AIDS 2012; 26:505-512.
- 892. Benn P, Fisher M, Kulasegaram R. UK guideline for the use of post-exposure prophylaxis for HIV following sexual exposure (2011). Int STD & AIDS 2011; 22: 695–708.
- 893. Tosini W, Muller P, Prazuck T, Benabdelmoumen G, Peyrouse E, Christian B, et al. Tolerability of HIV postexposure prophylaxis with tenofovir/emtricitabine and lopinavir/ritonavir tablet formulation. AIDS 2010; 24:2375-2380.

- 894. Sonder GJ, Prins JM, Regez RM, Brinkman K, Mulder JW, Veenstra J, et al. Comparison of two HIV postexposure prophylaxis regimens among men who have sex with men in Amsterdam: adverse effects do not influence compliance. Sex Transm Dis 2010; 37:681-6.
- 895. Diaz-Brito V, León A, Knobel H, Peraire J, Domingo P, Clotet B, et al. Post-exposure prophylaxis for HIV infection: a clinical trial comparing lop-inavir/ritonavir versus atazanavir each with zidovudine/lamivudine. Antivir Ther 2012; 17:337-347.
- 896. Mayer KH, Mimiaga MJ, Gelman M, Grasso C. Raltegravir, tenofovir DF and emcitrabine for postexposure prophylaxis to prevent the sexual transmission of HIV: safety, tolerability and adherence. J Acquir Immune Defic Syndr 2012; 59:354-358.
- 897. Blasco AJ, Arribas JR, Boix V, Clotet B, Domingo P, González-García J, et al. Análisis de costes y de coste/eficacia de las pautas preferentes de GESIDA para el tratamiento antirretroviral inicial. Enferm Infecc Microbiol Clin 2012; 30:283-293.